The Big Bang is a Coordinate Singularity for k=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k = -1$$\end{document} Inflationary FLRW Spacetimes

被引:0
作者
Eric Ling
机构
[1] KTH Royal Institute of Technology,Department of Mathematics
关键词
Big bang; Milne; Singularity; Dark energy; Dark matter; Antimatter;
D O I
10.1007/s10701-020-00335-7
中图分类号
学科分类号
摘要
We show that the big bang is a coordinate singularity for a large class of k=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k = -1$$\end{document} inflationary FLRW spacetimes which we have dubbed ‘Milne-like.’ By introducing a new set of coordinates, the big bang appears as a past boundary of the universe where the metric is no longer degenerate—a result which has already been investigated in the context of vacuum decay (Coleman and De Luccia in Phys Rev D 21:3305–3315, 1980). We generalize their results and approach the problem from a more mathematical perspective. Similar to how investigating the geometrical properties of the r=2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r = 2m$$\end{document} event horizon in Schwarzschild led to a better understanding of black holes, we believe that investigating the geometrical properties of the big bang coordinate singularity for Milne-like spacetimes could lead to a better understanding of cosmology. We show how the mathematics of these spacetimes may help illuminate certain issues associated with dark energy, dark matter, and the universe’s missing antimatter.
引用
收藏
页码:385 / 428
页数:43
相关论文
共 51 条
[1]  
Asselmeyer-Maluga T(2018)How to obtain a cosmological constant from small exotic Phys. Dark Univ. 19 66-77
[2]  
Krol J(1994)Open and closed universes, initial singularities, and inflation Phys. Rev. D 50 3692-3702
[3]  
Borde A(1996)Singularities in inflationary cosmology: a review Int. J. Mod. Phys. D 05 813-824
[4]  
Borde A(1997)Violation of the weak energy condition in inflating spacetimes Phys. Rev. D 56 717-723
[5]  
Vilenkin A(2003)Inflationary spacetimes are incomplete in past directions Phys. Rev. Lett. 90 151301-64
[6]  
Borde A(2018)-symmetric universe Phys. Rev. Lett. 121 251301-459
[7]  
Vilenkin A(2013)On dark matter, spiral galaxies, and the axioms of general relativity Geometric Anal. Math. Relativ. Nonlinear Partial Differ. Equ. 599 1-178
[8]  
Borde A(2010)Maximal analytic extensions of the Emparan-Reall black ring J. Differ. Geom. 85 425-3315
[9]  
Guth AH(2001)Regularity of horizons and the area theorem Ann. Henri Poincaré 2 109-3447
[10]  
Vilenkin A(1980)Gravitational effects on and of vacuum decay Phys. Rev. D 21 3305-356