Shortest path poset of Bruhat intervals

被引:0
作者
Saúl A. Blanco
机构
[1] DePaul University,Department of Mathematical Sciences
来源
Journal of Algebraic Combinatorics | 2013年 / 38卷
关键词
Shortest paths; Bruhat graph; Bruhat order; -polynomials; Complete ; -index;
D O I
暂无
中图分类号
学科分类号
摘要
We define the shortest path poset SP(u,v) of a Bruhat interval [u,v], by considering the shortest u–v paths in the Bruhat graph of a Coxeter group W, where u,v∈W. We consider the case of SP(u,v) having a unique rising chain under a reflection order and show that in this case SP(u,v) is a Gorenstein∗ poset. This allows us to derive the nonnegativity of certain coefficients of the complete cd-index. We furthermore show that the shortest path poset of an irreducible, finite Coxeter group exhibits a symmetric chain decomposition.
引用
收藏
页码:585 / 596
页数:11
相关论文
共 14 条
[1]  
Billera L.J.(2011)Quasisymmetric functions and Kazhdan–Lusztig polynomials Isr. J. Math. 184 317-348
[2]  
Brenti F.(1998)Pattern avoidance and rational smoothness of Schubert varieties Adv. Math. 139 141-156
[3]  
Billey S.C.(2011)The complete Electron. J. Comb. 18 448-472
[4]  
Blanco S.A.(1997)-index of dihedral and universal Coxeter groups J. Lond. Math. Soc. (2) 55 91-115
[5]  
Brenti F.(1993)Combinatorial expansions of Kazhdan–Lusztig polynomials Compos. Math. 89 2591-2595
[6]  
Dyer M.J.(2001)Hecke algebras and shellings of Bruhat intervals Proc. Am. Math. Soc. 129 225-251
[7]  
Dyer M.J.(2007)On minimal lengths of expressions of Coxeter group elements as products of reflections J. Algebr. Comb. 26 80-88
[8]  
Ehrenborg R.(1976)Decomposition theorem for the J. Comb. Theory, Ser. A 20 701-718
[9]  
Karu K.(2006)-index of Gorenstein posets Compos. Math. 142 193-206
[10]  
Greene C.(1991)Strong versions of Sperner’s theorem Discrete Math. 98 undefined-undefined