Privacy-preserving logistic regression training

被引:0
作者
Charlotte Bonte
Frederik Vercauteren
机构
[1] imec-Cosic,
[2] Dept. Electrical Engineering,undefined
[3] KU Leuven,undefined
来源
BMC Medical Genomics | / 11卷
关键词
Homomorphic encryption; Logistic regression; Privacy; Fixed Hessian;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 27 条
  • [1] Bos JW(2014)Private predictive analysis on encrypted medical data J Biomed Inform 50 234-243
  • [2] Lauter K(2018)Secure logistic regression based on homomorphic encryption IACR Cryptol ePrint Arch 2018 14-35
  • [3] Naehrig M(2012)Somewhat practical fully homomorphic encryption IACR Cryptol ePrint Arch 2012 144-663
  • [4] Kim M(2013)On Ideal Lattices and Learning with Errors over Rings J ACM 60 43-754
  • [5] Song Y(1988)Monotonicity of quadratic-approximation algorithms Ann Inst Stat Math 40 641-203
  • [6] Wang S(1931)Uber die abgrenzung der eigenwerte einer matrix Bulletin de l’Académie des Sciences de l’URSS. Classe des sciences mathématiques et na 6 749-200
  • [7] Xia Y(2015)On the concrete hardness of learning with errors J Math Cryptol 9 169-undefined
  • [8] Jiang X(1992)Multinomial logistic regression algorithm Ann Inst Stat Math 44 197-undefined
  • [9] Fan J(2016)A full rns variant of fv like somewhat homomorphic encryption schemes IACR Cryptol ePrint Arch 2017 22-undefined
  • [10] Vercauteren F(2017)Homomorphic sim2d operations: Single instruction much more data IACR Cryptol ePrint Arch 2017 22-undefined