Machine learning-based approach for predicting low birth weight

被引:0
|
作者
Amene Ranjbar
Farideh Montazeri
Mohammadsadegh Vahidi Farashah
Vahid Mehrnoush
Fatemeh Darsareh
Nasibeh Roozbeh
机构
[1] Hormozgan University of Medical Sciences,Fertility and Infertility Research Center
[2] Hormozgan University of Medical Sciences,Mother and Child Welfare Research Center
[3] Amirkabir University of Technology,undefined
来源
BMC Pregnancy and Childbirth | / 23卷
关键词
Low birth weight; Fetal weight; Birth weight; Machine learning; X gradient boost model;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] A machine learning-based framework for predicting game server load
    Ozer, Cagdas
    Cevik, Taner
    Gurhanli, Ahmet
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (06) : 9527 - 9546
  • [32] A Machine Learning-Based Model for Predicting the Risk of Cardiovascular Disease
    Hsiao, Chiu-Han
    Yu, Po-Chun
    Hsieh, Chia-Ying
    Zhong, Bing-Zi
    Tsai, Yu-Ling
    Cheng, Hao-min
    Chang, Wei-Lun
    Lin, Frank Yeong-Sung
    Huang, Yennun
    ADVANCED INFORMATION NETWORKING AND APPLICATIONS, AINA-2022, VOL 1, 2022, 449 : 364 - 374
  • [33] Machine Learning-Based Live Weight Estimation for Hanwoo Cow
    Dang, Changgwon
    Choi, Taejeong
    Lee, Seungsoo
    Lee, Soohyun
    Alam, Mahboob
    Park, Mina
    Han, Seungkyu
    Lee, Jaegu
    Hoang, Duytang
    SUSTAINABILITY, 2022, 14 (19)
  • [34] Identifying clinical phenotypes in extremely low birth weight infants-an unsupervised machine learning approach
    Matsushita, Felipe Yu
    Jornada Krebs, Vera Lucia
    de Carvalho, Werther Brunow
    EUROPEAN JOURNAL OF PEDIATRICS, 2022, 181 (03) : 1085 - 1097
  • [35] Birthweight Range Prediction and Classification: A Machine Learning-Based Sustainable Approach
    Alabbad, Dina A.
    Ajibi, Shahad Y.
    Alotaibi, Raghad B.
    Alsqer, Noura K.
    Alqahtani, Rahaf A.
    Felemban, Noor M.
    Rahman, Atta
    Aljameel, Sumayh S.
    Ahmed, Mohammed Imran Basheer
    Youldash, Mustafa M.
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2024, 6 (02): : 770 - 788
  • [36] Machine Learning-Based Approach for Hardware Faults Prediction
    Khalil, Kasem
    Eldash, Omar
    Kumar, Ashok
    Bayoumi, Magdy
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (11) : 3880 - 3892
  • [37] Machine Learning-Based Approach for Fake News Detection
    Gururaj H.L.
    Lakshmi H.
    Soundarya B.C.
    Flammini F.
    Janhavi V.
    Journal of ICT Standardization, 2022, 10 (04): : 509 - 530
  • [38] Machine Learning-Based Approach for the Gambling Problem Identification
    Kozak, Jan
    Probierz, Barbara
    Juszczuk, Przemyslaw
    Dziczkowski, Grzegorz
    Jach, Tomasz
    Stefanski, Piotr
    Glowania, Szymon
    Hrabia, Anita
    Wolek, Gabriel
    Sznapka, Wojciech
    Swierk, Lukasz
    Joniec, Natalia
    VIETNAM JOURNAL OF COMPUTER SCIENCE, 2025,
  • [39] Subtyping of hepatocellular adenoma: a machine learning-based approach
    Yongjun Liu
    Yao-Zhong Liu
    Lifu Sun
    Yoh Zen
    Chie Inomoto
    Matthew M. Yeh
    Virchows Archiv, 2022, 481 : 49 - 61
  • [40] A Machine learning-based approach to determining stress in rails
    Belding, Matthew
    Enshaeian, Alireza
    Rizzo, Piervincenzo
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2023, 22 (01): : 639 - 656