The Booth Lemniscate Starlikeness Radius for Janowski Starlike Functions

被引:0
|
作者
Somya Malik
Rosihan M. Ali
V. Ravichandran
机构
[1] National Institute of Technology,Department of Mathematics
[2] Universiti Sains Malaysia,School of Mathematical Sciences
关键词
Starlike functions; Janowski starlike functions; Booth lemniscate; Subordination; Radius of starlikeness; 30C80; 30C45; Secondary 30C10;
D O I
暂无
中图分类号
学科分类号
摘要
The function Gα(z)=1+z/(1-αz2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_\alpha (z)=1+ z/(1-\alpha z^2)$$\end{document},   0≤α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \alpha <1$$\end{document}, maps the open unit disk D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} onto the interior of a domain known as the Booth lemniscate. Associated with this function Gα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_\alpha $$\end{document} is the recently introduced class BS(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {BS}(\alpha )$$\end{document} consisting of normalized analytic functions f on D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} satisfying the subordination zf′(z)/f(z)≺Gα(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$zf'(z)/f(z) \prec G_\alpha (z)$$\end{document}. Of interest is its connection with known classes M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} of functions in the sense g(z)=(1/r)f(rz)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(z)=(1/r)f(rz)$$\end{document} belongs to BS(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {BS}(\alpha )$$\end{document} for some r in (0, 1) and all f∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in \mathcal {M}$$\end{document}. We find the largest radius r for different classes M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}, particularly when M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} is the class of starlike functions of order β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, or the Janowski class of starlike functions. As a primary tool for this purpose, we find the radius of the largest disk contained in Gα(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_\alpha (\mathbb {D})$$\end{document} and centered at a certain point a∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \in \mathbb {R}$$\end{document}.
引用
收藏
页码:2715 / 2732
页数:17
相关论文
共 50 条
  • [41] RADIUS OF STARLIKENESS OF CERTAIN ANALYTIC FUNCTIONS
    ZIEGLER, MR
    MATHEMATISCHE ZEITSCHRIFT, 1971, 122 (04) : 351 - &
  • [42] Radius of starlikeness of certain analytic functions
    S. Madhumitha
    V. Ravichandran
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [43] Coefficient inequalities for q-starlike functions associated with the Janowski functions
    Srivastava, H. M.
    Khan, Bilal
    Khan, Nazar
    Ahmad, Qazi Zahoor
    HOKKAIDO MATHEMATICAL JOURNAL, 2019, 48 (02) : 407 - 425
  • [44] On the order of strongly starlikeness in some classes of starlike functions
    M. Nunokawa
    J. Sokół
    K. Tra̧bka-wiȩcław
    Acta Mathematica Hungarica, 2015, 145 : 142 - 149
  • [45] Radius of starlikeness of certain analytic functions
    Madhumitha, S.
    Ravichandran, V
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (04)
  • [46] Starlikeness Associated with Lemniscate of Bernoulli
    Madaan, Vibha
    Kumar, Ajay
    Ravichandran, V
    FILOMAT, 2019, 33 (07) : 1937 - 1955
  • [47] Sufficient conditions for Janowski starlike functions with fixed second coefficient
    Najla M. Alarifi
    Afrika Matematika, 2022, 33
  • [48] Radius Of Starlikeness Of Functions Defined By Ratios Of Analytic Functions
    El-Faqeer, Ahmad Sulaiman Ahmad
    Mohd, Maisarah Haji
    Supramaniam, Shamani
    Ravichandran, Vaithiyanathan
    APPLIED MATHEMATICS E-NOTES, 2022, 22 : 516 - 528
  • [49] BOUND ON HANKEL DETERMINANTS H(2) FOR LEMNISCATE STARLIKE FUNCTIONS
    Kumar, Sushil
    Rai, Pratima
    Cetinkaya, Asena
    HONAM MATHEMATICAL JOURNAL, 2023, 45 (01): : 92 - 108
  • [50] FURTHER RESULTS ON A CLASS OF STARLIKE FUNCTIONS RELATED TO THE BERNOULLI LEMNISCATE
    Sokol, Janusz
    Thomas, Derek K.
    HOUSTON JOURNAL OF MATHEMATICS, 2018, 44 (01): : 83 - 95