The Booth Lemniscate Starlikeness Radius for Janowski Starlike Functions

被引:0
|
作者
Somya Malik
Rosihan M. Ali
V. Ravichandran
机构
[1] National Institute of Technology,Department of Mathematics
[2] Universiti Sains Malaysia,School of Mathematical Sciences
关键词
Starlike functions; Janowski starlike functions; Booth lemniscate; Subordination; Radius of starlikeness; 30C80; 30C45; Secondary 30C10;
D O I
暂无
中图分类号
学科分类号
摘要
The function Gα(z)=1+z/(1-αz2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_\alpha (z)=1+ z/(1-\alpha z^2)$$\end{document},   0≤α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \alpha <1$$\end{document}, maps the open unit disk D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} onto the interior of a domain known as the Booth lemniscate. Associated with this function Gα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_\alpha $$\end{document} is the recently introduced class BS(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {BS}(\alpha )$$\end{document} consisting of normalized analytic functions f on D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} satisfying the subordination zf′(z)/f(z)≺Gα(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$zf'(z)/f(z) \prec G_\alpha (z)$$\end{document}. Of interest is its connection with known classes M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} of functions in the sense g(z)=(1/r)f(rz)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(z)=(1/r)f(rz)$$\end{document} belongs to BS(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {BS}(\alpha )$$\end{document} for some r in (0, 1) and all f∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in \mathcal {M}$$\end{document}. We find the largest radius r for different classes M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}, particularly when M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} is the class of starlike functions of order β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, or the Janowski class of starlike functions. As a primary tool for this purpose, we find the radius of the largest disk contained in Gα(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_\alpha (\mathbb {D})$$\end{document} and centered at a certain point a∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \in \mathbb {R}$$\end{document}.
引用
收藏
页码:2715 / 2732
页数:17
相关论文
共 50 条
  • [31] Starlike functions associated with exponential function and the lemniscate of Bernoulli
    Kanika Khatter
    V. Ravichandran
    S. Sivaprasad Kumar
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 233 - 253
  • [32] JANOWSKI STARLIKE LOG-HARMONIC UNIVALENT FUNCTIONS
    Polatoglu, Yasar
    Deniz, Erhan
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2009, 38 (01): : 45 - 49
  • [33] ON STARLIKENESS OF A CLASS OF INTEGRAL OPERATORS FOR MEROMORPHIC STARLIKE FUNCTIONS
    Totoi, Alina
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2010, 55 (03): : 229 - 240
  • [34] RADIUS OF CONVEXITY AND STARLIKENESS OF UNIVALENT FUNCTIONS
    BAJPAI, SK
    SRIVASTA.RS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 32 (01) : 153 - &
  • [35] Some properties of analytic functions related with Booth lemniscate
    Najmadi, P.
    Najafzadeh, Sh.
    Ebadian, A.
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2018, 10 (01) : 112 - 124
  • [36] THE ORDER OF STARLIKENESS OF SOME CLASSES OF STRONGLY STARLIKE FUNCTIONS
    Liu, Jin-Lin
    Srivastava, Rekha
    QUAESTIONES MATHEMATICAE, 2018, 41 (05) : 707 - 718
  • [37] Radius of Starlikeness for Classes of Analytic Functions
    See Keong Lee
    Kanika Khatter
    V. Ravichandran
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 4469 - 4493
  • [38] On the order of strongly starlikeness in some classes of starlike functions
    Nunokawa, M.
    Sokol, J.
    Trabka-Wieclaw, K.
    ACTA MATHEMATICA HUNGARICA, 2015, 145 (01) : 142 - 149
  • [39] Radius of Starlikeness for Classes of Analytic Functions
    Lee, See Keong
    Khatter, Kanika
    Ravichandran, V.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (06) : 4469 - 4493
  • [40] RADIUS OF STARLIKENESS OF CERTAIN ANALYTIC FUNCTIONS
    Sebastian, Asha
    Ravichandran, V
    MATHEMATICA SLOVACA, 2021, 71 (01) : 83 - 104