Generalized Cesàro operators on Dirichlet-type spaces

被引:0
作者
Jianjun Jin
Shuan Tang
机构
[1] Hefei University of Technology,School of Mathematics Sciences
[2] Guizhou Normal University,School of Mathematics Sciences
来源
Acta Mathematica Scientia | 2022年 / 42卷
关键词
generalized Cesàro operator; Dirichlet-type spaces; Carleson measure; boundedness and compactness of operator; 47B38; 31C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we introduce and study a new kind of generalized Cesàro operator, Cμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{C}_{\mu}$$\end{document}, induced by a positive Borel measure μ on [0, 1) between Dirichlet-type spaces. We characterize the measures μ for which Cμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{C}_{\mu}$$\end{document} is bounded (compact) from one Dirichlet-type space, Dα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{D}_{\alpha}$$\end{document}, into another one, Dβ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{D}_{\beta}$$\end{document}.
引用
收藏
页码:212 / 220
页数:8
相关论文
共 12 条
[1]  
Aleman A(2001)An integral operator on J Anal Math 85 157-176
[2]  
Cima J(1997) and Hardy’s inequality Indiana Univ Math J 46 337-356
[3]  
Aleman A(2001)Integration operators on Bergman spaces Acta Sci Math (Szeged) 67 411-420
[4]  
Siskakis A(2003)The Cesàro operator on Dirichlet spaces Acta Math Sci 23B 561-566
[5]  
Galanopoulos P(2002)Extende Cesàro operators on the Bloch space in the unit ball of ℂ Arch Math 78 409-416
[6]  
Hu Z(1990)The Cesàro operator on the Bergman space Proc Amer Math Soc 110 461-462
[7]  
Miller V(1996)(ⅅ) Arch Math 67 312-318
[8]  
Miller T(1997)The Cesàro operator is bounded on Arch Math 68 398-406
[9]  
Siskakis A(1994)On the Bergman space norm of the Cesàro operator Proc Royal Soc Edinburgh Section A: Math 124 121-126
[10]  
Siskakis A(undefined)Cesàro-type operators on Hardy, BMOA and Bloch spaces undefined undefined undefined-undefined