How edge-reinforced random walk arises naturally

被引:0
|
作者
Silke W.W. Rolles
机构
[1] University of California,
[2] Los Angeles,undefined
[3] Department of Mathematics,undefined
[4] Box 951555,undefined
[5] Los Angeles,undefined
[6] CA 90095-1555,undefined
[7] USA. e-mail: srolles@math.ucla.edu,undefined
来源
Probability Theory and Related Fields | 2003年 / 126卷
关键词
Markov Chain; Random Walk; Reversible Markov Chain; Unique Mixture; Exchangeable Sequence;
D O I
暂无
中图分类号
学科分类号
摘要
 We give a characterization of a modified edge-reinforced random walk in terms of certain partially exchangeable sequences. In particular, we obtain a characterization of an edge-reinforced random walk (introduced by Coppersmith and Diaconis) on a 2-edge-connected graph. Modifying the notion of partial exchangeability introduced by Diaconis and Freedman in [3], we characterize unique mixtures of reversible Markov chains under a recurrence assumption.
引用
收藏
页码:243 / 260
页数:17
相关论文
共 17 条
  • [1] How edge-reinforced random walk arises naturally
    Rolles, SWW
    PROBABILITY THEORY AND RELATED FIELDS, 2003, 126 (02) : 243 - 260
  • [2] Once edge-reinforced random walk on a tree
    Rick Durrett
    Harry Kesten
    Vlada Limic
    Probability Theory and Related Fields, 2002, 122 : 567 - 592
  • [3] How vertex reinforced jump process arises naturally
    Zeng, Xiaolin
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (03): : 1061 - 1075
  • [4] THE SCALING LIMIT OF SENILE REINFORCED RANDOM WALK
    Holmes, Mark
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2009, 14 : 104 - 115
  • [5] Vertex-reinforced Random Walk for Network Embedding
    Xiao, Wenyi
    Zhao, Huan
    Zheng, Vincent W.
    Song, Yangqiu
    PROCEEDINGS OF THE 2020 SIAM INTERNATIONAL CONFERENCE ON DATA MINING (SDM), 2020, : 595 - 603
  • [6] On the speed of once-reinforced biased random walk on trees
    Collevecchio, Andrea
    Holmes, Mark
    Kious, Daniel
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [7] How Close Is a Fractional Process to a Random Walk with Drift?
    Larsson, Rolf
    JOURNAL OF TIME SERIES ECONOMETRICS, 2015, 7 (02) : 217 - 234
  • [8] How many probes are needed to compute the maximum of a random walk?
    Chassaing, P
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 81 (01) : 129 - 153
  • [9] How a centred random walk on the affine group goes to infinity
    Brofferio, S
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (03): : 371 - 384
  • [10] HeteEdgeWalk: A Heterogeneous Edge Memory Random Walk for Heterogeneous Information Network Embedding
    Liu, Zhenpeng
    Zhang, Shengcong
    Zhang, Jialiang
    Jiang, Mingxiao
    Liu, Yi
    ENTROPY, 2023, 25 (07)