Unsupervised Domain Adaptation with Background Shift Mitigating for Person Re-Identification

被引:1
|
作者
Yan Huang
Qiang Wu
Jingsong Xu
Yi Zhong
Zhaoxiang Zhang
机构
[1] University of Technology Sydney,School of Electrical and Data Engineering
[2] Beijing Institute of Technology,School of Information and Electronics
[3] Chinese Academy of Sciences,National Laboratory of Pattern Recognition, Institute of Automation
来源
关键词
Person re-identification; Unsupervised domain adaptation; Background suppression; Image generation; Virtual label estimation;
D O I
暂无
中图分类号
学科分类号
摘要
Unsupervised domain adaptation has been a popular approach for cross-domain person re-identification (re-ID). There are two solutions based on this approach. One solution is to build a model for data transformation across two different domains. Thus, the data in source domain can be transferred to target domain where re-ID model can be trained by rich source domain data. The other solution is to use target domain data plus corresponding virtual labels to train a re-ID model. Constrains in both solutions are very clear. The first solution heavily relies on the quality of data transformation model. Moreover, the final re-ID model is trained by source domain data but lacks knowledge of the target domain. The second solution in fact mixes target domain data with virtual labels and source domain data with true annotation information. But such a simple mixture does not well consider the raw information gap between data of two domains. This gap can be largely contributed by the background differences between domains. In this paper, a Suppression of Background Shift Generative Adversarial Network (SBSGAN) is proposed to mitigate the gaps of data between two domains. In order to tackle the constraints in the first solution mentioned above, this paper proposes a Densely Associated 2-Stream (DA-2S) network with an update strategy to best learn discriminative ID features from generated data that consider both human body information and also certain useful ID-related cues in the environment. The built re-ID model is further updated using target domain data with corresponding virtual labels. Extensive evaluations on three large benchmark datasets show the effectiveness of the proposed method.
引用
收藏
页码:2244 / 2263
页数:19
相关论文
共 50 条
  • [1] Unsupervised Domain Adaptation with Background Shift Mitigating for Person Re-Identification
    Huang, Yan
    Wu, Qiang
    Xu, Jingsong
    Zhong, Yi
    Zhang, Zhaoxiang
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (07) : 2244 - 2263
  • [2] Online Unsupervised Domain Adaptation for Person Re-identification
    Rami, Hamza
    Ospici, Matthieu
    Lathuiliere, Stephane
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 3829 - 3838
  • [3] Mutual purification for unsupervised domain adaptation in person re-identification
    Lei Zhang
    Qishuai Diao
    Na Jiang
    Zhong Zhou
    Wei Wu
    Neural Computing and Applications, 2022, 34 : 16929 - 16944
  • [4] Domain-Camera Adaptation for Unsupervised Person Re-Identification
    Tian, Jiajie
    Teng, Zhu
    Li, Yan
    Li, Rui
    Wu, Yi
    Fan, Jianping
    2019 6TH INTERNATIONAL CONFERENCE ON BEHAVIORAL, ECONOMIC AND SOCIO-CULTURAL COMPUTING (BESC 2019), 2019,
  • [5] Representation strategy for unsupervised domain adaptation on person re-identification
    Li, Hao
    Zhang, Tao
    Li, Shuang
    Li, Xuan
    Zhao, Xin
    OPTOELECTRONICS LETTERS, 2024, 20 (12) : 749 - 756
  • [6] Mutual purification for unsupervised domain adaptation in person re-identification
    Zhang, Lei
    Diao, Qishuai
    Jiang, Na
    Zhou, Zhong
    Wu, Wei
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (19): : 16929 - 16944
  • [7] UNSUPERVISED DOMAIN ADAPTATION THROUGH SYNTHESIS FOR PERSON RE-IDENTIFICATION
    Xiang, Suncheng
    Fu, Yuzhuo
    You, Guanjie
    Liu, Ting
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [8] Representation strategy for unsupervised domain adaptation on person re-identification
    LI Hao
    ZHANG Tao
    LI Shuang
    LI Xuan
    ZHAO Xin
    Optoelectronics Letters, 2024, 20 (12) : 749 - 756
  • [9] Domain Adaptation Through Synthesis for Unsupervised Person Re-identification
    Bak, Slawomir
    Carr, Peter
    Lalonde, Jean-Francois
    COMPUTER VISION - ECCV 2018, PT XIII, 2018, 11217 : 193 - 209
  • [10] Unsupervised domain adaptation in homogeneous distance space for person re-identification
    Zheng, Dingyuan
    Xiao, Jimin
    Wei, Yunchao
    Wang, Qiufeng
    Huang, Kaizhu
    Zhao, Yao
    PATTERN RECOGNITION, 2022, 132