Maximal L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-regularity of the heat equation and application to a free boundary problem of the Navier-Stokes equations near the half-space

被引:0
作者
Takayoshi Ogawa
Senjo Shimizu
机构
[1] Tohoku University,Mathematical Institute/Research Alliance Center for Mathematical Sciences
[2] Kyoto University,Graduate School of Human and Environmental Studies
关键词
Heat equations; Maximal ; -regularity; End-point estimate; Initial-boundary value problems; Free boundary problems; The Neumann boundary condition; Primary 35K20; Secondary 42B25;
D O I
10.1007/s41808-021-00133-w
中图分类号
学科分类号
摘要
This is a survey of recent results concerning on maximal L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-regularity of the heat equation with the Naumann boundary condition in the half Euclidian space Ogawa and Shimizu (Proc Jpn Acad A, 96:57–62, 2020). It also includes maximal L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-regularity for the initial boundary value of the Stokes system in the half-space under the stress free boundary condition. As an application, we introduce the time global well-posedness for the free boundary problem of the incompressible Navier-Stokes equations under the small initial data in the half Euclidean spaces R+n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n_+$$\end{document} developed in Danchin-Hieber-Mucha-Tolksdorf (arXiv:2011.07918) and Ogawa and Shimizu (2021).
引用
收藏
页码:509 / 535
页数:26
相关论文
共 90 条
  • [11] Calderón AP(1975)Théorèmes d’unicité pour le systéme de Navier-Stokes tridimensionnel J. Math. Pure Appl. 54 305-387
  • [12] Panzone R(2003)Sommes d’opérateurs linéaires et équations différentielles opérationelles Proc. Roy Soc. Edinburgh 133A 1311-1334
  • [13] Bourgain J(2007)Density-dependent incompressible viscous fluids in critical spaces Comm. Partial Differ. Equ. 32 1373-1397
  • [14] Pavlović N(2009)Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density J. Funct. Anal. 256 881-927
  • [15] Cannone M(2012)A critical functional framework for the inhomogeneous Navier-Stokes equations in the half-space Comm. Pure Appl. Math. 65 1458-1480
  • [16] Planchon F(2007)A Lagrangian approach for the incompressible Navier-Stokes equations with variable density Math. Z. 257 193-224
  • [17] Chemin J-Y(1987)Optimal Math. Z. 196 189-201
  • [18] Da Prato G(1964)- Arch. Rat. Mech. Anal. 46 269-315
  • [19] Grisvard P(2011)-regularity for parabolic problems with inhomogeneous boundary data Dyn. Syst. I 495-504
  • [20] Danchin R(1991)On the closedness of the sum of two closed operators J. Funct. Anal. 102 72-94