Maximal L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-regularity of the heat equation and application to a free boundary problem of the Navier-Stokes equations near the half-space

被引:0
作者
Takayoshi Ogawa
Senjo Shimizu
机构
[1] Tohoku University,Mathematical Institute/Research Alliance Center for Mathematical Sciences
[2] Kyoto University,Graduate School of Human and Environmental Studies
关键词
Heat equations; Maximal ; -regularity; End-point estimate; Initial-boundary value problems; Free boundary problems; The Neumann boundary condition; Primary 35K20; Secondary 42B25;
D O I
10.1007/s41808-021-00133-w
中图分类号
学科分类号
摘要
This is a survey of recent results concerning on maximal L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-regularity of the heat equation with the Naumann boundary condition in the half Euclidian space Ogawa and Shimizu (Proc Jpn Acad A, 96:57–62, 2020). It also includes maximal L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-regularity for the initial boundary value of the Stokes system in the half-space under the stress free boundary condition. As an application, we introduce the time global well-posedness for the free boundary problem of the incompressible Navier-Stokes equations under the small initial data in the half Euclidean spaces R+n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n_+$$\end{document} developed in Danchin-Hieber-Mucha-Tolksdorf (arXiv:2011.07918) and Ogawa and Shimizu (2021).
引用
收藏
页码:509 / 535
页数:26
相关论文
共 90 条
  • [1] Abels H(2005)The initial-value problem for the Navier-Stokes equations with a free surface in Adv. Differ. Equ. 10 45-64
  • [2] Abidi H(2007)-Sobolev spaces Ann. Inst. Fourier (Grenoble) 57 883-917
  • [3] Paicu M(2000)Existence globale pour un fluide inhomogène J. Math. Fluid Mech. 2 16-98
  • [4] Amann H(1981)On the strong solvability of the Navier-Stokes equations Comm. Pure Appl. Math. 34 359-392
  • [5] Beale JT(1984)The initial value problem for the Navier-Stokes equations with a free surface Arch. Ration. Mech. Anal. 84 307-352
  • [6] Beale JT(2020)Large-time regularity of viscous surface waves RIMS Kokyuroku Bessatsu B 82 137-157
  • [7] Beale JT(1962)Decay of solutions of the Stokes system arising in free surface flow on an infinite layer Proc. Nat. Acad. Sci. USA 48 356-365
  • [8] Nishida T(2008)Convolution operators on Banach space valued functions J. Funct. Anal. 255 2233-2247
  • [9] Teramoto Y(1996)Ill-posedness of the Navier-Stokes equations in a critical space in 3D Comm. PDE 21 179-193
  • [10] Benedek A(1999)Self-similar solutions for Navier-Stokes equations in J. Anal. Math. 77 27-50