Extension of CMSA with a Learning Mechanism: Application to the Far from Most String Problem

被引:0
作者
Pinacho-Davidson, Pedro [1 ]
Blum, Christian [2 ]
Pinninghoff, M. Angelica [1 ]
Contreras, Ricardo [3 ]
机构
[1] Univ Concepcion, Fac Engn, Dept Comp Sci, Edmundo Larenas 219, Concepcion 4070409, Chile
[2] CSIC, Artificial Intelligence Res Inst IIIA, Campus UAB, Bellaterra 08193, Spain
[3] Univ Adolfo Ibanez, Fac Sci & Engn, Diagonal Las Torres 2640, Santiago 7910000, Chile
关键词
Hybrid metaheuristics; Population-based algorithm; Optimization; String consensus problems; PATH RELINKING; OPTIMIZATION; ALGORITHM; CONSTRUCT; SELECTION; GRASP; ADAPT; MERGE; SOLVE;
D O I
10.1007/s44196-024-00488-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the problems with exact techniques for solving combinatorial optimization problems is that they tend to run into problems with growing problem instance size. Nevertheless, they might still be very usefully employed, even in the context of large problem instances, as a sub-ordinate method within so-called hybrid metaheuristics. "Construct, Merge, Solve and Adapt" (Cmsa) is a hybrid metaheuristic technique that allows the application of exact methods to large-scale problem instances through intelligent instance reduction. However, Cmsa does not make use of an explicit learning mechanism. In this work, an algorithm called L E A R N _ C M S A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {Learn}\_\textsc {Cmsa}$$\end{document} is presented for the application to the far from most string problem (FFMSP), which is an NP-hard combinatorial optimization problem from the field of string consensus problems. L E A R N _ C M S A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {Learn}\_\textsc {Cmsa}$$\end{document} results from hybridization between Cmsa and a population-based algorithm. By means of this hybridization, explicit learning is introduced to Cmsa. Even though the FFMSP is a well-studied problem, L E A R N _ C M S A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsc {Learn}\_\textsc {Cmsa}$$\end{document} achieves superior performance when compared to current state-of-the-art solvers.
引用
收藏
页数:16
相关论文
共 24 条
[1]  
Blum C, 2016, ART INTEL, P1, DOI 10.1007/978-3-319-30883-8
[2]  
Blum Christian, 2014, Evolutionary Computation in Combinatorial Optimisation. 14th European Conference (EvoCOP 2014). Revised Selected Papers: LNCS 8600, P1, DOI 10.1007/978-3-662-44320-0_1
[3]   Application of Negative Learning Ant Colony Optimization to the Far from Most String Problem [J].
Blum, Christian ;
Pinacho-Davidson, Pedro .
EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, EVOCOP 2023, 2023, 13987 :82-97
[4]   Construct, Merge, Solve and Adapt: Application to Unbalanced Minimum Common String Partition [J].
Blum, Christian .
HYBRID METAHEURISTICS (HM 2016), 2016, 9668 :17-31
[5]   Construct, Merge, Solve & Adapt A new general algorithm for combinatorial optimization [J].
Blum, Christian ;
Pinacho, Pedro ;
Lopez-Ibanez, Manuel ;
Lozano, Jose A. .
COMPUTERS & OPERATIONS RESEARCH, 2016, 68 :75-88
[6]  
Boschetti MA, 2009, LECT NOTES COMPUT SC, V5818, P171, DOI 10.1007/978-3-642-04918-7_13
[7]  
Ferone Daniele, 2013, Hybrid Metaheuristics. 8th International Workshop, HM 2013. Proceedings, P174, DOI 10.1007/978-3-642-38516-2_14
[8]   Hybridizations of GRASP with path relinking for the far from most string problem [J].
Ferone, Daniele ;
Festa, Paola ;
Resende, Mauricio G. C. .
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2016, 23 (03) :481-506
[9]   CMSA algorithm for solving the prioritized pairwise test data generation problem in software product lines [J].
Ferrer, Javier ;
Chicano, Francisco ;
Ortega-Toro, Jose Antonio .
JOURNAL OF HEURISTICS, 2021, 27 (1-2) :229-249
[10]   On some optimization problems in molecular biology [J].
Festa, P. .
MATHEMATICAL BIOSCIENCES, 2007, 207 (02) :219-234