Hydrogen-rich gas production from sorption-enhanced sludge gasification using CaO-based biochar derived from crab shell as a CO2 sorbent

被引:0
|
作者
Yanhua Li
Long Wu
Qing Xu
Zhanyong Li
机构
[1] Tianjin University of Science & Technology,Tianjin Key Laboratory of Integrated Design and On
[2] Guangzhou Institute of Energy Conversion,Line Monitoring for Light Industry & Food Machinery and Equipment, College of Mechanical Engineering
[3] Guangdong Intelligent Filling Technology Limited Company,CAS Key Laboratory of Renewable Energy
[4] International Joint Research Center of Low-Carbon Green Process Equipment,undefined
来源
Journal of Material Cycles and Waste Management | 2022年 / 24卷
关键词
CaO-based biochar; Crab shell; Sewage sludge; Steam gasification; H; -rich syngas;
D O I
暂无
中图分类号
学科分类号
摘要
A CaO-based biochar (CSC) prepared from waste crab shell was used as a low-cost CO2 sorbent to enhance sludge steam gasification for H2-rich gas production. The effects of gasification temperature and CSC addition on sludge gasification performance were investigated. Results showed that the sludge steam gasification can be evidently enhanced with CSC addition and produced H2-rich gas with CO2 removal. The appropriate gasification temperature for CSC sorption-enhanced gasification should be below 800 ℃. With CSC addition at 700 ℃, H2 content increased to 63.2% (36.4% of pure sludge case) while CO2 content reduced to 3.5% (34.5% of pure sludge case). Meanwhile, the H2-rich syngas with high H2/CO ratio (up to 10.2) was achieved. At higher gasification temperature of 800 ℃ and 900 ℃, the CO2 absorbed in the CSC will be released via the decomposition reaction of CaCO3 and adding CSC showed slight effect on sludge gasification. Although the Ca content in CSC was less than 36%, CSC showed almost the same positive effects on H2 production and CO2 reduction compared to pure CaO in sludge gasification process. These findings indicated that CSC has the potential to replace CaO for sorption-enhanced gasification for sewage sludge disposal.
引用
收藏
页码:2353 / 2364
页数:11
相关论文
共 34 条
  • [31] Process analysis of H2 production from pyrolysis-CO2 gasification-water gas shift for oil sludge based on calcium looping
    Chu, Zhiwei
    Li, Yingjie
    Zhang, Chunxiao
    Fang, Yi
    FUEL, 2023, 342
  • [32] H2-rich gas production from gasification of oily sludge via supercritical water technology: Synergy effect of KOH, K2CO3, and reaction parameters
    Cheng, Jie
    Gehraz, Seyyed Abbas Nouri
    Khodamoradi, Saadi
    Qali, Dunya Jani
    Jasim, Dheyaa J.
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2024, 205
  • [33] Enhanced H2 gas production from steam gasification of a winery waste through CO2 capture by waste concrete fines and use of alkali catalysts
    Vamvuka, D.
    Elmazaj, J.
    Berkis, M.
    RENEWABLE ENERGY, 2023, 219
  • [34] Integrated approach for H2-Rich syngas production from wastes using carbon-based catalysts and subsequent CO2 adsorption by carbon-based adsorbents: A review
    Tahir, Mudassir Hussain
    Chen, Dezhen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 59 : 679 - 696