Sobolev Orthogonal Polynomials on the Sierpinski Gasket

被引:0
作者
Qingxuan Jiang
Tian Lan
Kasso A. Okoudjou
Robert S. Strichartz
Shashank Sule
Sreeram Venkat
Xiaoduo Wang
机构
[1] Cornell University,Department of Mathematics
[2] ETH Zurich,Department of Mathematics
[3] Tufts University,Department of Mathematics
[4] University of Maryland,Department of Mathematics
[5] North Carolina State University,Department of Mathematics
[6] University of Illinois Urbana-Champaign,Department of Mathematics
来源
Journal of Fourier Analysis and Applications | 2021年 / 27卷
关键词
Orthogonal polynomials; Sierpinski Gasket; Sobolev orthogonal polynomials; Primary 42C05; 28A80; Secondary 33F05; 33A99;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a theory of Sobolev orthogonal polynomials on the Sierpiński gasket (SG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SG$$\end{document}), which is a fractal set that can be viewed as a limit of a sequence of finite graphs. These orthogonal polynomials arise through the Gram–Schmidt orthogonalisation process applied on the set of monomials on SG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SG$$\end{document} using several notions of a Sobolev inner products. After establishing some recurrence relations for these orthogonal polynomials, we give estimates for their L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}, L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document}, and Sobolev norms, and study their asymptotic behavior. Finally, we study the properties of zero sets of polynomials and develop fast computational tools to explore applications to quadrature and interpolation.
引用
收藏
相关论文
共 26 条
  • [1] Althammer P(1962)Eine Erweiterung des Orthogonalitätsbegriffes bei Polynomen und deren Anwendung auf die beste Approximation J. Reine Angew. Math. 211 192-204
  • [2] Ben-Gal S(2006)Calculus on the Sierpinski gasket II: point singularities, eigenfunctions, and normal derivatives of the heat kernel Trans. Am. Math. Soc. 358 3883-3936
  • [3] Shaw-Krauss A(1956)On haar’s theorem concerning chebychev approximation problems having unique solutions Proc. Am. Math. Soc. 7 609-615
  • [4] Strichartz RS(2017)What is ... a Sobolev orthogonal polynomial? Not. Am. Math. Soc. 64 873-875
  • [5] Young C(2015)On Sobolev orthogonal polynomials Expositiones Mathematicae 33 308-352
  • [6] Mairhuber JC(1996)A short history of orthogonal polynomials in a Sobolev space I. the non-discrete case Niew Arch . voor Wiskunde, 14 93-112
  • [7] Marcellán F(2004)Calculus on the Sierpinski gasket I: polynomials, exponentials and power series J. Funct. Anal. 215 290-340
  • [8] Moreno-Balcázar JJ(2013)Orthogonal polynomials on the sierpinski gasket Constr. Approx. 37 311-340
  • [9] Marcellan F(2009)Variational splines and Paley–Wiener spaces on combinatorial graphs Constr. Approx. 29 1-21
  • [10] Xu Y(1972)Zu den Orthogonalpolynomen von Althammer J. Reine Angew. Math. 252 195-199