Ternary Egyptian fractions with prime denominator

被引:0
|
作者
Adva Mond
Julien Portier
机构
[1] University of Cambridge,Department of Pure Mathematics and Mathematical Statistics (DPMMS)
来源
Research in Number Theory | 2022年 / 8卷
关键词
Egyptian fractions; Analytic number theory; Counting problems;
D O I
暂无
中图分类号
学科分类号
摘要
For a prime number p, let A3(p)=|{m∈N:∃m1,m2,m3∈N,mp=1m1+1m2+1m3}|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_3(p)= | \{ m \in \mathbb {N}: \exists m_1,m_2,m_3 \in \mathbb {N}, \frac{m}{p}=\frac{1}{m_1}+\frac{1}{m_2}+\frac{1}{m_3} \} |$$\end{document}. In 2019 Luca and Pappalardi proved that x(logx)3≪∑p≤xA3(p)≪x(logx)5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x (\log x)^3 \ll \sum _{p \le x} A_{3}(p) \ll x (\log x)^5$$\end{document}. We improve the upper bound, showing ∑p≤xA3(p)≪x(logx)3(loglogx)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{p \le x} A_{3}(p) \ll x (\log x)^3 (\log \log x)^2$$\end{document}.
引用
收藏
相关论文
共 14 条
  • [1] Ternary Egyptian fractions with prime denominator
    Mond, Adva
    Portier, Julien
    RESEARCH IN NUMBER THEORY, 2022, 8 (03)
  • [2] ON REPRESENTATIONS BY EGYPTIAN FRACTIONS
    Ambro, Florin
    Barcau, Mugurel
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 60 (03): : 331 - 336
  • [3] Underapproximation by Egyptian fractions
    Nathanson, Melvyn B.
    JOURNAL OF NUMBER THEORY, 2023, 242 : 208 - 234
  • [4] Egyptian Fractions Revisited
    Kosheleva, Olga
    Kreinovich, Vladik
    INFORMATICS IN EDUCATION, 2009, 8 (01): : 35 - 48
  • [5] Egyptian fractions with restrictions
    Chen, Yong-Gao
    Elsholtz, Christian
    Jiang, Li-Li
    ACTA ARITHMETICA, 2012, 154 (02) : 109 - 123
  • [6] ON EGYPTIAN FRACTIONS OF LENGTH 3
    Banderier, Cyril
    Gomez Ruiz, Carlos Alexis
    Luca, Florian
    Pappalardi, Francesco
    Trevino, Enrique
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2021, 62 (01): : 257 - 274
  • [7] Egyptian fractions of bounded length
    Lebowitz-Lockard, Noah
    RESEARCH IN NUMBER THEORY, 2024, 10 (01)
  • [8] Egyptian fractions of bounded length
    Noah Lebowitz-Lockard
    Research in Number Theory, 2024, 10
  • [9] On a problem related to Egyptian fractions
    Jianu, Marilena
    Popescu, Sever Angel
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2021, 64 (04): : 401 - 411
  • [10] Two-term Egyptian fractions
    Chen, Tieling
    Koo, Reginald
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2013, 19 (02) : 15 - 25