Distribution of action movements (DAM): a descriptor for human action recognition

被引:0
|
作者
Franco Ronchetti
Facundo Quiroga
Laura Lanzarini
Cesar Estrebou
机构
[1] Universidad Nacional de La Plata,Instituto de Investigacion en Informatica III
来源
Frontiers of Computer Science | 2015年 / 9卷
关键词
human action recognition; descriptor; Prob-SOM; MSRC12; Action3D;
D O I
暂无
中图分类号
学科分类号
摘要
Human action recognition fromskeletal data is an important and active area of research in which the state of the art has not yet achieved near-perfect accuracy on many wellknown datasets. In this paper, we introduce the Distribution of Action Movements Descriptor, a novel action descriptor based on the distribution of the directions of the motions of the joints between frames, over the set of all possible motions in the dataset. The descriptor is computed as a normalized histogram over a set of representative directions of the joints, which are in turn obtained via clustering. While the descriptor is global in the sense that it represents the overall distribution of movement directions of an action, it is able to partially retain its temporal structure by applying a windowing scheme.
引用
收藏
页码:956 / 965
页数:9
相关论文
共 50 条
  • [21] Multimodal human action recognition based on spatio-temporal action representation recognition model
    Wu, Qianhan
    Huang, Qian
    Li, Xing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (11) : 16409 - 16430
  • [22] Action recognition in depth videos using hierarchical gaussian descriptor
    Xuan Son Nguyen
    Abdel-Illah Mouaddib
    Thanh Phuong Nguyen
    Laurent Jeanpierre
    Multimedia Tools and Applications, 2018, 77 : 21617 - 21652
  • [23] Action recognition in depth videos using hierarchical gaussian descriptor
    Nguyen, Xuan Son
    Mouaddib, Abdel-Illah
    Thanh Phuong Nguyen
    Jeanpierre, Laurent
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (16) : 21617 - 21652
  • [24] Human Action Recognition Bases on Local Action Attributes
    Zhang, Jing
    Lin, Hong
    Nie, Weizhi
    Chaisorn, Lekha
    Wong, Yongkang
    Kankanhalli, Mohan S.
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2015, 10 (03) : 1264 - 1274
  • [25] T-VLAD: Temporal vector of locally aggregated descriptor for multiview human action recognition
    Naeem, Hajra Binte
    Murtaza, Fiza
    Yousaf, Muhammad Haroon
    Velastin, Sergio A.
    PATTERN RECOGNITION LETTERS, 2021, 148 : 22 - 28
  • [26] Human Action Recognition with Transformers
    Mazzeo, Pier Luigi
    Spagnolo, Paolo
    Fasano, Matteo
    Distante, Cosimo
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT III, 2022, 13233 : 230 - 241
  • [27] Human Action Recognition: A Survey
    Fu, Meixia
    Chen, Na
    Huang, Zhongjie
    Ni, Kaili
    Liu, Yuhao
    Sun, Songlin
    Ma, Xiaomei
    SIGNAL AND INFORMATION PROCESSING, NETWORKING AND COMPUTERS (ICSINC), 2019, 550 : 69 - 77
  • [28] Human Action Recognition in Video
    Singh, Dushyant Kumar
    ADVANCED INFORMATICS FOR COMPUTING RESEARCH, ICAICR 2018, PT I, 2019, 955 : 54 - 66
  • [29] Human Action Recognition Using LBP-TOP as Sparse Spatio-Temporal Feature Descriptor
    Mattivi, Riccardo
    Shao, Ling
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, PROCEEDINGS, 2009, 5702 : 740 - 747
  • [30] Human action recognition on depth dataset
    Zan Gao
    Hua Zhang
    Anan A. Liu
    Guangping Xu
    Yanbing Xue
    Neural Computing and Applications, 2016, 27 : 2047 - 2054