Artificial neural networks improve early outcome prediction and risk classification in out-of-hospital cardiac arrest patients admitted to intensive care

被引:0
|
作者
Jesper Johnsson
Ola Björnsson
Peder Andersson
Andreas Jakobsson
Tobias Cronberg
Gisela Lilja
Hans Friberg
Christian Hassager
Jesper Kjaergard
Matt Wise
Niklas Nielsen
Attila Frigyesi
机构
[1] Lund University,Department of Clinical Sciences Lund, Anesthesia & Intensive Care, Helsingborg Hospital
[2] Helsingborg Hospital,Department of Anaesthesiology and Intensive Care
[3] Lund University,Centre for Mathematical Sciences, Mathematical Statistics
[4] Lund University,Department of Energy Sciences, Faculty of Engineering
[5] Lund University,Department of Clinical Sciences Lund, Anesthesia & Intensive Care, Skåne University Hospital
[6] Lund University,Department of Clinical Sciences Lund, Neurology, Skåne University Hospital
[7] Lund University,Department of Clinical Sciences Lund, Intensive and Perioperative Care, Skåne University Hospital
[8] University of Copenhagen,Department of Cardiology, The Heart Centre, Rigshospitalet University Hospital and Department of Clinical Medicine
[9] University Hospital of Wales,Department of Critical Care
来源
Critical Care | / 24卷
关键词
Machine learning; Artificial intelligence; Artificial neural networks; Out-of-hospital cardiac arrest; Cerebral performance category; Critical care; Intensive care; Prediction; Prognostication;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Artificial neural networks improve early outcome prediction and risk classification in out-of-hospital cardiac arrest patients admitted to intensive care
    Johnsson, Jesper
    Bjornsson, Ola
    Andersson, Peder
    Jakobsson, Andreas
    Cronberg, Tobias
    Lilja, Gisela
    Friberg, Hans
    Hassager, Christian
    Kjaergard, Jesper
    Wise, Matt
    Nielsen, Niklas
    Frigyesi, Attila
    CRITICAL CARE, 2020, 24 (01)
  • [2] Early quantitative infrared pupillometry for prediction or neurological outcome in patients admitted to intensive care after out-of-hospital cardiac arrest
    Warren, Alex
    McCarthy, Ciana
    Andiapen, Mervyn
    Crouch, Margie
    Finney, Simon
    Hamilton, Simon
    Jain, Ajay
    Jones, Daniel
    Proudfoot, Alastair
    BRITISH JOURNAL OF ANAESTHESIA, 2022, 128 (05) : 849 - 856
  • [3] Predicting neurological outcome after out-of-hospital cardiac arrest with cumulative information; development and internal validation of an artificial neural network algorithm
    Peder Andersson
    Jesper Johnsson
    Ola Björnsson
    Tobias Cronberg
    Christian Hassager
    Henrik Zetterberg
    Pascal Stammet
    Johan Undén
    Jesper Kjaergaard
    Hans Friberg
    Kaj Blennow
    Gisela Lilja
    Matt P. Wise
    Josef Dankiewicz
    Niklas Nielsen
    Attila Frigyesi
    Critical Care, 25
  • [4] Predicting neurological outcome after out-of-hospital cardiac arrest with cumulative information; development and internal validation of an artificial neural network algorithm
    Andersson, Peder
    Johnsson, Jesper
    Bjornsson, Ola
    Cronberg, Tobias
    Hassager, Christian
    Zetterberg, Henrik
    Stammet, Pascal
    Unden, Johan
    Kjaergaard, Jesper
    Friberg, Hans
    Blennow, Kaj
    Lilja, Gisela
    Wise, Matt P.
    Dankiewicz, Josef
    Nielsen, Niklas
    Frigyesi, Attila
    CRITICAL CARE, 2021, 25 (01)
  • [5] Artificial intelligence to support out-of-hospital cardiac arrest care: A scoping review
    Toy, Jake
    Bosson, Nichole
    Schlesinger, Shira
    Gausche-Hill, Marianne
    Stratton, Samuel
    RESUSCITATION PLUS, 2023, 16
  • [6] A rule for early outcome classification of out-of-hospital cardiac arrest patients presenting with ventricular fibrillation
    Monsieurs, KG
    De Cauwer, H
    Wuyts, FL
    Bossaert, LL
    RESUSCITATION, 1998, 36 (01) : 37 - 44
  • [7] Survival and outcome prediction using the Apache III and the out-of-hospital cardiac arrest (OHCA) score in patients treated in the intensive care unit (ICU) following out-of-hospital, in-hospital or ICU cardiac arrest
    Skrifvars, M. B.
    Varghese, B.
    Parr, M. J.
    RESUSCITATION, 2012, 83 (06) : 728 - 733
  • [8] Development and validation of early prediction for neurological outcome at 90 days after return of spontaneous circulation in out-of-hospital cardiac arrest
    Nishioka, Norihiro
    Kobayashi, Daisuke
    Kiguchi, Takeyuki
    Irisawa, Taro
    Yamada, Tomoki
    Yoshiya, Kazuhisa
    Park, Changhwi
    Nishimura, Tetsuro
    Ishibe, Takuya
    Yagi, Yoshiki
    Kishimoto, Masafumi
    Kim, Sung-Ho
    Hayashi, Yasuyuki
    Sogabe, Taku
    Morooka, Takaya
    Sakamoto, Haruko
    Suzuki, Keitaro
    Nakamura, Fumiko
    Matsuyama, Tasuku
    Okada, Yohei
    Matsui, Satoshi
    Yoshimura, Satoshi
    Kimata, Shunsuke
    Kawai, Shunsuke
    Makino, Yuto
    Kitamura, Tetsuhisa
    Iwami, Taku
    RESUSCITATION, 2021, 168 : 142 - 150
  • [9] Early predictors of poor outcome after out-of-hospital cardiac arrest
    Martinell, Louise
    Nielsen, Niklas
    Herlitz, Johan
    Karlsson, Thomas
    Horn, Janneke
    Wise, Matt P.
    Unden, Johan
    Rylander, Christian
    CRITICAL CARE, 2017, 21
  • [10] Early predictors of poor outcome after out-of-hospital cardiac arrest
    Louise Martinell
    Niklas Nielsen
    Johan Herlitz
    Thomas Karlsson
    Janneke Horn
    Matt P. Wise
    Johan Undén
    Christian Rylander
    Critical Care, 21