Applying new fixed point theorems on fractional and ordinary differential equations

被引:0
作者
Erdal Karapınar
Thabet Abdeljawad
Fahd Jarad
机构
[1] China Medical University,Department of Medical Research
[2] Prince Sultan University,Department of Mathematics and General Sciences
[3] Çankaya University,Department of Mathematics
来源
Advances in Difference Equations | / 2019卷
关键词
Fractional differential equations; ODE; Generalized ; -; -; -contractions; Weakly contractive mappings; 47H10; 54H25; 11J83;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a fixed point theorem that extends and unifies several existing results in the literature. We apply the proven fixed point results on the existence of solution of ordinary boundary value problems and fractional boundary value problems with integral type boundary conditions in the frame of some Caputo type fractional operators.
引用
收藏
相关论文
共 91 条
  • [1] Jarad F.(2018)On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative Chaos Solitons Fractals 117 16-20
  • [2] Abdeljawad T.(2017)Generalized fractional derivatives generated by a class of local proportional derivatives Eur. Phys. J. Spec. Top. 226 3457-3471
  • [3] Hammouch Z.(2017)Fractional proportional differences with memory Eur. Phys. J. Spec. Top. 226 3333-3354
  • [4] Jarad F.(1922)Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales Fundam. Math. 3 133-181
  • [5] Abdeljawad T.(1973)On contractive mappings Proc. Am. Math. Soc. 40 604-608
  • [6] Alzabut J.(1969)On nonlinear contractions Proc. Am. Math. Soc. 20 458-464
  • [7] Abdeljawad T.(1977)Some unique fixed point theorems Indian J. Pure Appl. Math. 8 223-230
  • [8] Jarad F.(2001)Some theorems on weakly contractive maps Nonlinear Anal. 47 2683-2693
  • [9] Alzabut J.(1975)An extension of Banach contraction principle through rational expressions Indian J. Pure Appl. Math. 6 1455-1458
  • [10] Banach S.(2018)Best proximity point for certain proximal contraction type mappings J. Math. Anal. 9 1-15