A Boundary Mixture Approach to Violations of Conditional Independence

被引:0
作者
Johan Braeken
机构
[1] Tilburg University,Department of Methodology and Statistics
来源
Psychometrika | 2011年 / 76卷
关键词
Fréchet–Hoeffding bounds; copula function; local item dependencies; conditional independence;
D O I
暂无
中图分类号
学科分类号
摘要
Conditional independence is a fundamental principle in latent variable modeling and item response theory. Violations of this principle, commonly known as local item dependencies, are put in a test information perspective, and sharp bounds on these violations are defined. A modeling approach is proposed that makes use of a mixture representation of these boundaries to account for the local dependence problem by finding a balance between independence on the one side and absolute dependence on the other side. In contrast to alternative approaches, the nature of the proposed boundary mixture model does not necessitate a change in formulation of the typical item characteristic curves used in item response theory. This has attractive interpretational advantages and may be useful for general test construction purposes.
引用
收藏
页码:57 / 76
页数:19
相关论文
共 37 条
  • [1] Ashford J.R.(1970)Multivariate probit analysis Biometrics 26 535-546
  • [2] Sowden R.R.(2009)A mixed model framework for teratology studies Biostatistics 10 744-755
  • [3] Braeken J.(2007)Copulas for residual dependency Psychometrika 72 393-411
  • [4] Tuerlinckx F.(1997)Local dependence indexes for item pairs using item response theory Journal of Educational and Behavioral Statistics 22 265-289
  • [5] Braeken J.(1959)Note on Psychometrika 24 89-91
  • [6] Tuerlinckx F.(1999)/ Journal of Educational Measurement 36 119-140
  • [7] De Boeck P.(1951)Contextual explanations of local dependence in item clusters in a large-scale hands-on science performance assessment Annales de l’Université Lyon: Série 3 14 53-77
  • [8] Chen W.(1992)Sur les tableaux de corrélation dont les marges sont données Psychometrika 57 423-436
  • [9] Thissen D.(1940)Full-information item bi-factor analysis Schriften des Matematischen Instituts und des Instituts für angewandte Mathematik der Universität Berlin 5 179-223
  • [10] Cureton E.E.(1997)Masstabinvariante Korrelations Theorie Psychological Methods 2 261-277