Periodic solutions of symmetric Kepler perturbations and applications

被引:0
作者
Angelo Alberti
Claudio Vidal
机构
[1] Universidade Federal de Sergipe,Departamento de Matemática
[2] Universidad del Bío-Bío,Grupo de Investigación en Sistemas Dinámicos y Aplicaciones (GISDA), Departamento de Matemática, Facultad de Ciencias
来源
Journal of Nonlinear Mathematical Physics | 2016年 / 23卷
关键词
Perturbation theory; Symmetries; Continuation method; Delaunay-Poincaré variables; Circular Solutions; 34C25; 34C14;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the existence of several families of symmetric periodic solutions as continuation of circular orbits of the Kepler problem for certain symmetric differentiable perturbations using an appropriate set of Poincaré-Delaunay coordinates which are essential in our approach. More precisely, we try separately two situations in an independent way, namely, when the unperturbed part corresponds to a Kepler problem in inertial cartesian coordinates and when it corresponds to a Kepler problem in rotating coordinates on ℝ3. Moreover, the characteristic multipliers of the symmetric periodic solutions are characterized. The planar case arises as a particular case. Finally, we apply these results to study the existence and stability of periodic orbits of the Matese-Whitman Hamiltonian and the generalized Størmer model.
引用
收藏
页码:439 / 465
页数:26
相关论文
共 39 条
  • [1] Alberti A(2015)New families of symmetric periodic solutions of the spatial anisotropic Manev problem J. Math. Phys. 56 012901-256
  • [2] Vidal C(1993)New periodic solutions of the planar three-body problem corresponding to elliptic motion in the lunar theory J. Diff. Eqs. 4 202-88
  • [3] Arenstorf R(2000)Periodic solutions of symmetric perturbations of the Kepler problem J. Diff. Eqs. 163 76-19
  • [4] Cabral H(2005)Analytic continuation in the case of non-regular dependency on a small parameter with an application to celestial mechanics J. Diff. Eqs. 219 1-80
  • [5] Vidal C(1970)Periodic solutions of periodic systems of ordinary differential equations containing a parameter Arch. Rat. Mech. Anal. 38 59-160
  • [6] Cors J(1970)On periodic solutions near equilibrium points of conservative systems Arch. Rat. Mech. Anal. 45 143-404
  • [7] Pinyol C(2003)A simple model for the chaotic motion around (433) Eros J. Astron. Sci. 51 391-111
  • [8] Soler J(2013)Periodic orbits of Hamiltonian systems: Applications to perturbed Kepler problems Chaos, solitons & fractals 57 105-268
  • [9] Duistermaat J(2004)The Keplerian regime of charged particle in planetary magnetospheres Physica D 197 242-252
  • [10] Duistermaat J(2005)Global dynamics of dust grains in magnetic planets Physics Letters A 338 247-1407