Completion of Modules over Serial, Right Noetherian Rings

被引:0
作者
A. I. Generalov
I. M. Zilberbord
机构
[1] St.Petersburg State University,
关键词
Noetherian Ring; Serial Ring; Linear Topology; Injective Envelope; Pure Injective Envelope;
D O I
10.1023/B:JOTH.0000017887.20917.3d
中图分类号
学科分类号
摘要
Linear topology defined on an arbitrary right module over a right Noetherian serial ring R enables one to describe the reduced, pure injective R-modules as modules that are complete in this topology. With the use of the completion of modules, the pure injective envelope of any right R-module is constructed. Bibliography: 8 titles.
引用
收藏
页码:1583 / 1590
页数:7
相关论文
共 8 条
  • [1] Generalov A. I.(2000)Basic submodules of modules over serial, right Noetherian rings. I Zap. Nauchn. Semin. POMI 272 129-143
  • [2] Zilberbord I. M.(2001)Basic submodules of modules over serial, right Noetherian rings. II Zap. Nauchn. Semin. POMI 281 154-169
  • [3] Generalov A. I.(1986)Inductively closed proper classes over bounded hnp-rings Algebra Logika 25 384-404
  • [4] Zilberbord I. M.(1988)Serial rings with right Krull dimension one. II J. Algebra 117 99-116
  • [5] Generalov A. I.(1984)Serial right noetherian rings Canad. J. Math. 36 22-37
  • [6] Wright M. H.(1969)Purity and algebraic compactness for modules Pacific J. Math. 28 699-719
  • [7] Singh S.(undefined)undefined undefined undefined undefined-undefined
  • [8] Warfield R. B.(undefined)undefined undefined undefined undefined-undefined