\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathcal{W}}_3} $\end{document} irregular states and isolated \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=2 $\end{document} superconformal field theories

被引:0
作者
Hiroaki Kanno
Kazunobu Maruyoshi
Shotaro Shiba
Masato Taki
机构
[1] Nagoya University,Graduate School of Mathematics and KMI
[2] California Institute of Technology,Mathematical Physics Lab.
[3] High Energy Accelerator Research Organization (KEK),undefined
[4] RIKEN Nishina Center,undefined
关键词
Supersymmetric gauge theory; Conformal and W Symmetry; String Duality;
D O I
10.1007/JHEP03(2013)147
中图分类号
学科分类号
摘要
We explore the proposal that the six-dimensional (2, 0) theory on the Riemann surface with irregular punctures leads to a four-dimensional gauge theory coupled to the isolated \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N}=2 $\end{document} superconformal theories of Argyres-Douglas type, and to two-dimensional conformal field theory with irregular states. Following the approach of Gaiotto-Teschner for the Virasoro case, we construct \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathcal{W}}_3} $\end{document} irregular states by colliding a single SU(3) puncture with several regular punctures of simple type. If n simple punctures are colliding with the SU(3) puncture, the resulting irregular state is a simultaneous eigenvector of the positive modes Ln, . . . , L2n and W2n, . . . , W3n of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathcal{W}}_3} $\end{document} algebra. We find the corresponding isolated SCFT with an SU(3) flavor symmetry as a nontrivial IR fixed point on the Coulomb branch of the SU(3) linear quiver gauge theories, by confirming that its Seiberg-Witten curve correctly predicts the conditions for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathcal{W}}_3} $\end{document} irregular states. We also compare these SCFT’s with the ones obtained from the BPS quiver method.
引用
收藏
相关论文
共 104 条
[1]  
Gaiotto D(2012) = 2 dualities JHEP 08 034-undefined
[2]  
Argyres PC(1995)New phenomena in SU(3) supersymmetric gauge theory Nucl. Phys. B 448 93-undefined
[3]  
Douglas MR(1996)New Nucl. Phys. B 461 71-undefined
[4]  
Argyres PC(1996) = 2 superconformal field theories in four-dimensions Nucl. Phys. B 471 430-undefined
[5]  
Plesser MR(2010)Study of Lett. Math. Phys. 91 167-undefined
[6]  
Seiberg N(2009) = 2 superconformal field theories in four-dimensions JHEP 11 002-undefined
[7]  
Witten E(2004)Liouville correlation functions from four-dimensional gauge theories Adv. Theor. Math. Phys. 7 831-undefined
[8]  
Eguchi T(2012)A JHEP 02 031-undefined
[9]  
Hori K(2012) conformal Toda field theory correlation functions from conformal JHEP 12 050-undefined
[10]  
Ito K(2012) = 2 SU( JHEP 10 138-undefined