Local Lower Bounds on Characteristics of Quantum and Classical Systems

被引:0
作者
Shirokov M.E. [1 ]
机构
[1] Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow
关键词
locally almost affine function; lower semicontinuous function; probability distribution; quantum channel; quantum state; Shannon entropy; von Neumann entropy;
D O I
10.1134/S1995080223060422
中图分类号
学科分类号
摘要
Abstract: We consider methods for obtaining local lower bounds on characteristics of quantum (resp. classical) systems, i.e., lower bounds valid in the trace norm ε-neighborhood of a given state (resp. probability distribution). Our basic tool is the quasi-classical modification of the Alicki–Fannes–Winter technique which gives faithful one-side continuity bounds with the rank/energy constraint imposed on only one of the two quantum states (resp. probability distributions). We also propose a new universal method that allows us to obtain easy computable faithful local lower bounds on many important characteristics of quantum (resp. classical) systems. The main attention is paid to infinite-dimensional systems. © 2023, Pleiades Publishing, Ltd.
引用
收藏
页码:2169 / 2191
页数:22
相关论文
共 21 条
  • [1] Holevo A.S., Quantum Systems, (2012)
  • [2] Nielsen M.A., Chuang I.L., Quantum Computation and Quantum Information, (2000)
  • [3] Wilde M.M., Quantum Information Theory, (2013)
  • [4] Ghourchian H., Gohari A., Amini A., Existence and continuity of differential entropy for a class of distributions, IEEE Commun. Lett., 21, pp. 1469-1472, (2017)
  • [5] Mirsky L., Symmetric gauge functions and unitarily invariant norms, Quart. J. Math. Oxford, 2, pp. 50-59, (1960)
  • [6] Lindblad G., Expectation and entropy inequalities for finite quantum systems, Commun. Math. Phys., 39, pp. 111-119, (1974)
  • [7] Wehrl A., General properties of entropy, Rev. Mod. Phys., 50, pp. 221-250, (1978)
  • [8] Ohya M., Petz D., Quantum Entropy and Its Use, (2004)
  • [9] Shirokov M.E., Entropy characteristics of subsets of states I, Izv. Math., 70, pp. 1265-1292, (2006)
  • [10] Alicki R., Fannes M., Continuity of quantum conditional information, J. Phys. A: Math. Gen., 37, pp. L55-L57, (2004)