Discrepancy of Weyl Sequences (nα)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n\alpha )$$\end{document} Perturbed by Rationally Periodic Functions

被引:0
|
作者
Poj Lertchoosakul
Sergey Meleshko
机构
[1] Suranaree University of Technology,School of Mathematics, Institute of Science
关键词
Weyl sequence; Discrepancy; Low-discrepancy sequence; Uniform distribution modulo 1; Periodic perturbation; 11J71; 11K38; 11K45;
D O I
10.1007/s41980-023-00788-2
中图分类号
学科分类号
摘要
In this paper, we investigate the quantitative measure of uniform distribution of Weyl sequences perturbed by rationally periodic functions, such as (nα+cos(3nπ/4))n=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n\alpha +\cos (3n\pi /4))_{n=0}^\infty $$\end{document} where α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is an irrational number. We demonstrate that the discrepancy of these sequences attains the same order of magnitude bounds for the discrepancy of classical Weyl sequences (nα)n=0∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n\alpha )_{n=0}^\infty .$$\end{document}
引用
收藏
相关论文
共 15 条