α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Exponential Stability of Impulsive Fractional-Order Complex-Valued Neural Networks with Time Delays

被引:0
作者
Peng Wan
Jigui Jian
机构
[1] China Three Gorges University,College of Science
[2] China Three Gorges University,Three Gorges Mathematical Research Center
关键词
-exponential stability; Fractional-order; Complex-valued neural network; Impulse; Delay: inequality technique;
D O I
10.1007/s11063-018-9938-x
中图分类号
学科分类号
摘要
This paper investigates the global α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-exponential stability of impulsive fractional-order complex-valued neural networks with time delays. By constructing proper Lyapunov–Krasovskii functional and employing fractional-order complex-valued differential inequality, some sufficient conditions are obtained to ensure the existence, uniqueness and global α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-exponential stability of the equilibrium point for the considered neural networks. Moreover, the exponential convergence rate is estimated, which depends on the parameters and the order of differentiation of system. Finally, one numerical example with simulations is given to illustrate the effectiveness of the obtained results.
引用
收藏
页码:1627 / 1648
页数:21
相关论文
共 130 条
[81]  
Chen JY(undefined)undefined undefined undefined undefined-undefined
[82]  
Li CD(undefined)undefined undefined undefined undefined-undefined
[83]  
Huang TW(undefined)undefined undefined undefined undefined-undefined
[84]  
Yang XJ(undefined)undefined undefined undefined undefined-undefined
[85]  
Wang F(undefined)undefined undefined undefined undefined-undefined
[86]  
Yang YQ(undefined)undefined undefined undefined undefined-undefined
[87]  
Hu MF(undefined)undefined undefined undefined undefined-undefined
[88]  
Hu J(undefined)undefined undefined undefined undefined-undefined
[89]  
Wang J(undefined)undefined undefined undefined undefined-undefined
[90]  
Zhang ZQ(undefined)undefined undefined undefined undefined-undefined