α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Exponential Stability of Impulsive Fractional-Order Complex-Valued Neural Networks with Time Delays

被引:0
作者
Peng Wan
Jigui Jian
机构
[1] China Three Gorges University,College of Science
[2] China Three Gorges University,Three Gorges Mathematical Research Center
关键词
-exponential stability; Fractional-order; Complex-valued neural network; Impulse; Delay: inequality technique;
D O I
10.1007/s11063-018-9938-x
中图分类号
学科分类号
摘要
This paper investigates the global α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-exponential stability of impulsive fractional-order complex-valued neural networks with time delays. By constructing proper Lyapunov–Krasovskii functional and employing fractional-order complex-valued differential inequality, some sufficient conditions are obtained to ensure the existence, uniqueness and global α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-exponential stability of the equilibrium point for the considered neural networks. Moreover, the exponential convergence rate is estimated, which depends on the parameters and the order of differentiation of system. Finally, one numerical example with simulations is given to illustrate the effectiveness of the obtained results.
引用
收藏
页码:1627 / 1648
页数:21
相关论文
共 130 条
[1]  
Ahmed E(2007)On fractional order differential equations model for nonlocal epidemics Physica A 379 607-614
[2]  
Elgazzar AS(2000)Fractional market dynamics Physica A 287 482-492
[3]  
Laskin N(2012)Stability analysis of Caputo fractional-order nonlinear systems revisited Nonlinear Dyn 67 2433-2439
[4]  
Delavari H(2009)Mittag–Leffler stability of fractional order nonlinear dynamic systems Automatica 45 1965-1969
[5]  
Baleanu D(2010)Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability Comput Math Appl 59 1810-1821
[6]  
Sadati J(2009)Synchronization of a new fractional-order hyperchaotic system Phys Lett A 373 2329-2337
[7]  
Li Y(2015)Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems Commun Nonlinear Sci Numer Simul 22 650-659
[8]  
Chen YQ(2017)On a fractal LC-electric circuit modeled by local fractional calculus Commun Nonlinear Sci Numer Simul 47 200-206
[9]  
Podlubny I(2016)Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems Therm Sci 21 1161-1171
[10]  
Li Y(2016)Mittag–Leffler stability analysis on variable-time impulsive fractional-order neural networks Neurocomputing 207 276-286