Comparison of Direct and Indirect Determination of Leaf Area Index in Permanent Grassland
被引:0
|
作者:
Andreas Klingler
论文数: 0引用数: 0
h-index: 0
机构:Agricultural Research and Education Centre Raumberg-Gumpenstein,Institute of Plant Production and Cultural Landscape
Andreas Klingler
Andreas Schaumberger
论文数: 0引用数: 0
h-index: 0
机构:Agricultural Research and Education Centre Raumberg-Gumpenstein,Institute of Plant Production and Cultural Landscape
Andreas Schaumberger
Francesco Vuolo
论文数: 0引用数: 0
h-index: 0
机构:Agricultural Research and Education Centre Raumberg-Gumpenstein,Institute of Plant Production and Cultural Landscape
Francesco Vuolo
László B. Kalmár
论文数: 0引用数: 0
h-index: 0
机构:Agricultural Research and Education Centre Raumberg-Gumpenstein,Institute of Plant Production and Cultural Landscape
László B. Kalmár
Erich M. Pötsch
论文数: 0引用数: 0
h-index: 0
机构:Agricultural Research and Education Centre Raumberg-Gumpenstein,Institute of Plant Production and Cultural Landscape
Erich M. Pötsch
机构:
[1] Agricultural Research and Education Centre Raumberg-Gumpenstein,Institute of Plant Production and Cultural Landscape
[2] University of Natural Resources and Life Sciences,Institute of Geomatics
[3] Vienna,Faculty of Agricultural and Environmental Sciences
[4] Szent István University,undefined
来源:
PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science
|
2020年
/
88卷
关键词:
Leaf area index;
Grassland;
Remote sensing;
Non-destructive sward assessment;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Indirect, non-destructive methods to derive biophysical parameters, such as leaf area index (LAI), are of major importance for optimal grassland growth modelling and management. In this study, we compared different methods for the estimation of LAI in permanent grassland including (i) two direct methods, (ii) two indirect optical methods (AccuPAR and LAI-2200C), (iii) a proximal (field spectrometer) and a satellite remote sensing approach using Sentinel-2 (S-2) data, both based on radiative transfer modelling (RTM) of vegetation. To consider the seasonal variability of LAI sufficiently, we performed in situ measurements weekly during the entire growing season of 2018 and 2019. The RTM-based methods showed the lowest root-mean-square error (RMSE) when compared with direct green LAI measurements, which ranged from 1.68 to 7.85. The indirect optical methods resulted in higher RMSE values but in similar high correlation coefficients (r). The comparison between the indirect optical methods showed that the AccuPAR and the LAI-2200C highly correlate with a systematic underestimation of the AccuPAR in the upper range of LAI values. As expected, S-2 and the field spectrometer showed the highest correlation (RMSE: 0.40 and r: 0.95). Generally, we observed a significant influence of the seasonal changes of the canopy structure and morphology on the estimation accuracy.
机构:
Univ Castilla La Mancha, CREA, Ctra Penas Km 3-4, Albacete 02071, SpainUniv Castilla La Mancha, CREA, Ctra Penas Km 3-4, Albacete 02071, Spain
Ballesteros, R.
Ortega, J. F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Castilla La Mancha, CREA, Ctra Penas Km 3-4, Albacete 02071, SpainUniv Castilla La Mancha, CREA, Ctra Penas Km 3-4, Albacete 02071, Spain
Ortega, J. F.
Hernandez, D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Castilla La Mancha, IDR, Albacete 02071, SpainUniv Castilla La Mancha, CREA, Ctra Penas Km 3-4, Albacete 02071, Spain
Hernandez, D.
Moreno, M. A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Castilla La Mancha, CREA, Ctra Penas Km 3-4, Albacete 02071, SpainUniv Castilla La Mancha, CREA, Ctra Penas Km 3-4, Albacete 02071, Spain
Moreno, M. A.
VII CONGRESO IBERICO DE AGROINGENIERIA Y CIENCIAS HORTICOLAS: INNOVAR Y PRODUCIR PARA EL FUTURO. INNOVATING AND PRODUCING FOR THE FUTURE,
2014,
: 632
-
637