Einstein metrics on compact Lie groups which are not naturally reductive

被引:0
|
作者
Andreas Arvanitoyeorgos
Kunihiko Mori
Yusuke Sakane
机构
[1] University of Patras,Department of Mathematics
[2] Saibi-Heisei Junior & Senior High School,Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology
[3] Osaka University,undefined
来源
Geometriae Dedicata | 2012年 / 160卷
关键词
Einstein metrics; Homogeneous spaces; Naturally reductive metrics; Kähler C-spaces; 53C25; 53C30; 17B20;
D O I
暂无
中图分类号
学科分类号
摘要
The study of left-invariant Einstein metrics on compact Lie groups which are naturally reductive was initiated by D’Atri and Ziller (Mem Am Math Soc 18, (215) 1979). In 1996 the second author obtained non-naturally reductive Einstein metrics on the Lie group SU(n) for n ≥  6, by using a method of Riemannian submersions. In the present work we prove existence of non-naturally reductive Einstein metrics on the compact simple Lie groups SO(n) (n ≥  11), Sp(n) (n ≥  3), E6, E7, and E8.
引用
收藏
页码:261 / 285
页数:24
相关论文
共 23 条
  • [1] Einstein metrics on compact Lie groups which are not naturally reductive
    Arvanitoyeorgos, Andreas
    Mori, Kunihiko
    Sakane, Yusuke
    GEOMETRIAE DEDICATA, 2012, 160 (01) : 261 - 285
  • [2] Non-naturally reductive Einstein metrics on exceptional Lie groups
    Chrysikos, Ioannis
    Sakane, Yusuke
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 116 : 152 - 186
  • [3] Invariant Einstein metrics on certain compact semisimple Lie groups
    Yan, Zaili
    Deng, Shaoqiang
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 59 : 138 - 153
  • [4] EINSTEIN METRICS ON COMPACT SIMPLE LIE GROUPS ATTACHED TO STANDARD TRIPLES
    Yan, Zaili
    Deng, Shaoqiang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (12) : 8587 - 8605
  • [5] Spectral isolation of naturally reductive metrics on simple Lie groups
    Carolyn S. Gordon
    Craig J. Sutton
    Mathematische Zeitschrift, 2010, 266 : 979 - 995
  • [6] Spectral isolation of naturally reductive metrics on simple Lie groups
    Gordon, Carolyn S.
    Sutton, Craig J.
    MATHEMATISCHE ZEITSCHRIFT, 2010, 266 (04) : 979 - 995
  • [7] Non-naturally reductive Einstein metrics on normal homogeneous Einstein manifolds
    Yan, Zaili
    Deng, Shaoqiang
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (08)
  • [8] Tangent Lie Groups are Riemannian Naturally Reductive Spaces
    Agricola, Ilka
    Ferreira, Ana Cristina
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 895 - 911
  • [9] Invariant Einstein Metrics on Some Homogeneous Spaces of Classical Lie Groups
    Arvanitoyeorgos, Andreas
    Dzhepko, V. V.
    Nikonorov, Yu. G.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2009, 61 (06): : 1201 - 1213
  • [10] Geodesic orbit metrics on compact simple Lie groups arising from flag manifolds
    Chen, Huibin
    Chen, Zhiqi
    Wolf, Joseph A.
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (08) : 846 - 851