Design of Wind Turbine Blade for Solar Chimney Power Plant

被引:3
|
作者
Liu J. [1 ,2 ]
Tian R. [1 ]
Nie J. [1 ]
机构
[1] College of Energy and Power Engineering, Hohhot
[2] College of Aeronautics, Inner Mongolia University of Technology, Hohhot
关键词
A; blade element theory; solar chimney power plant (SCPP); TP; 242; turbine blade design and optimization; wind turbine;
D O I
10.1007/s12204-018-2003-0
中图分类号
学科分类号
摘要
Aiming at the global efficiency of solar chimney power plant (SCPP), we design a wind turbine generation device to elevate its electricity generating efficiency. Based on wind power utilization theory, a new method is proposed to design a type of wind turbine blade for SCPP. The lift and resistance coefficients on different Reynolds numbers of NACA4418 airfoil, which is suitable for experimental solar electricity generation system, are determined by Profili-V2.0 airfoil design software, a program written in Matlab to calculate chord length of the airfoil. The optimization is conducted by class-shape-transformation (CST) parameterization method and Xfoil software. An airfoil design program is designed on the basis of blade element theory and attack angle with the highest lift coefficient to iteratively determine the inflow angle and setting angle. Prandtl’s tip-loss factor is applied to correct the setting angle, after the airfoil data are input into AutoCAD to build an airfoil model which is then imported into Solidworks to draw blades. A new way is put forward to design wind turbine blades in SCPP. © 2018, Shanghai Jiaotong University and Springer-Verlag GmbH Germany, part of Springer Nature.
引用
收藏
页码:820 / 826
页数:6
相关论文
共 50 条
  • [1] Design of Wind Turbine Blade for Solar Chimney Power Plant
    刘佳
    田瑞
    聂晶
    JournalofShanghaiJiaotongUniversity(Science), 2018, 23 (06) : 820 - 826
  • [2] Wind Turbine Blade Design
    Schubel, Peter J.
    Crossley, Richard J.
    ENERGIES, 2012, 5 (09) : 3425 - 3449
  • [3] Design of Adjustable Blade Wind Turbine for Constant Generated Power
    Upadhaya, K. G.
    Tripathi, M. M.
    Verma, Amit
    Kumar, Rajeev
    2014 6th IEEE Power India International Conference (PIICON), 2014,
  • [4] Assessment of the Turbine Location for Optimum Performance of the Solar Vortex Engine as a Replacement to the Tall Chimney Solar Updraft Power Plant Design
    Tukkee, Ali M.
    Al-Kayiem, Hussain H.
    Gilani, Syed I. U.
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2024, 10 (01): : 38 - 54
  • [5] A Comparative Study of CFD Models of a Real Wind Turbine in Solar Chimney Power Plants
    Gholamalizadeh, Ehsan
    Chung, Jae Dong
    ENERGIES, 2017, 10 (10):
  • [6] Wind Turbine Blade Design Review
    Schubel, P.
    Crossley, R.
    WIND ENGINEERING, 2012, 36 (04) : 365 - 388
  • [7] On wind turbine blade design optimization
    M. Z. Dosaev
    L. A. Klimina
    B. Ya. Lokshin
    Yu. D. Selyutskiy
    Journal of Computer and Systems Sciences International, 2014, 53 : 402 - 409
  • [8] On wind turbine blade design optimization
    Dosaev, M. Z.
    Klimina, L. A.
    Lokshin, B. Ya.
    Selyutskiy, Yu. D.
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2014, 53 (03) : 402 - 409
  • [9] IMPROVING THE DESIGN OF A WIND TURBINE BLADE
    Ghinea, R. A.
    Bere, P.
    Neamtu, C.
    2014 INTERNATIONAL CONFERENCE ON PRODUCTION RESEARCH - REGIONAL CONFERENCE AFRICA, EUROPE AND THE MIDDLE EAST AND 3RD INTERNATIONAL CONFERENCE ON QUALITY AND INNOVATION IN ENGINEERING AND MANAGEMENT (ICPR-AEM 2014), 2014, : 221 - 226
  • [10] Small Wind Turbine Blade Design and Optimization
    Muhsen, Hani
    Al-Kouz, Wael
    Khan, Waqar
    SYMMETRY-BASEL, 2020, 12 (01):