Ising Critical Exponents on Random Trees and Graphs

被引:0
作者
Sander Dommers
Cristian Giardinà
Remco van der Hofstad
机构
[1] Eindhoven University of Technology,Department of Mathematics and Computer Science
[2] Modena and Reggio Emilia University,Department of Mathematics, Physics and Computer Science
来源
Communications in Mathematical Physics | 2014年 / 328卷
关键词
Critical Temperature; Ising Model; Critical Exponent; Random Graph; Degree Distribution;
D O I
暂无
中图分类号
学科分类号
摘要
We study the critical behavior of the ferromagnetic Ising model on random trees as well as so-called locally tree-like random graphs. We pay special attention to trees and graphs with a power-law offspring or degree distribution whose tail behavior is characterized by its power-law exponent τ > 2. We show that the critical inverse temperature of the Ising model equals the hyperbolic arctangent of the reciprocal of the mean offspring or mean forward degree distribution. In particular, the critical inverse temperature equals zero when τ∈(2,3]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau \in (2,3]}$$\end{document} where this mean equals infinity.
引用
收藏
页码:355 / 395
页数:40
相关论文
共 62 条
  • [1] Aldous D.(2007)Processes on unimodular random networks Electron. J. Probabl. 12 1454-1508
  • [2] Lyons R.(1986)On the continuity of the magnetization and energy in Ising ferromagnets J. Stat. Phys. 42 861-869
  • [3] Bricmont J.(1983)First-order phase transitions in Potts and Ising systems Phys. Lett. A 95 169-172
  • [4] Lebowitz J.L.(2006)Generating simple random graphs with prescribed degree distribution J. Stat. Phys. 124 1377-1397
  • [5] Bricmont J.(2009)Contact processes on random graphs with power law degree distributions have critical value 0 Annals Probabl. 37 2332-2356
  • [6] Lebowitz J.L.(2010)Gibbs measures and phase transitions on sparse random graphs Braz. J. Probabl. Stat. 24 137-211
  • [7] Messager A.(2010)Ising models on locally tree-like graphs Annals Appl. Probabl. 20 565-592
  • [8] Britton T.(2013)Factor models on locally tree-like graphs Annals Probabl. 41 4162-4213
  • [9] Deijfen M.(2001)Thin Fisher zeros J. Phys. A Math. General 34 6211-6223
  • [10] Martin-Löf A.(2010)Ising models on power-law random graphs J. Stat. Phys. 141 638-660