Global existence of solutions for a nonlinearly perturbed Keller–Segel system in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^2$$\end{document}

被引:0
作者
Masaki Kurokiba
Takayoshi Ogawa
Futoshi Takahashi
机构
[1] Fukuoka University,Department of Applied Mathematics
[2] Tohoku University,Mathematical Institute
[3] Osaka City University,Graduate School of Science
关键词
Primary 35K15, 35K55, 35B40, 35M10; Secondary 92C17; Perturbed Keller–Segel system; chemotaxis; variational method;
D O I
10.1007/s00033-008-8043-9
中图分类号
学科分类号
摘要
We show the global existence of small solution to the perturbed Keller–Segel system of simplified version. Our system has a perturbed nonlinear term of worse sign, therefore the existence and uniqueness of solution is not really obvious. The local existence theorem is obtained by a variational observation for the elliptic part.
引用
收藏
页码:840 / 867
页数:27
相关论文
empty
未找到相关数据