Global existence of solutions for a nonlinearly perturbed Keller–Segel system in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{R}}^2$$\end{document}
被引:0
作者:
Masaki Kurokiba
论文数: 0引用数: 0
h-index: 0
机构:Fukuoka University,Department of Applied Mathematics
Masaki Kurokiba
Takayoshi Ogawa
论文数: 0引用数: 0
h-index: 0
机构:Fukuoka University,Department of Applied Mathematics
Takayoshi Ogawa
Futoshi Takahashi
论文数: 0引用数: 0
h-index: 0
机构:Fukuoka University,Department of Applied Mathematics
Futoshi Takahashi
机构:
[1] Fukuoka University,Department of Applied Mathematics
[2] Tohoku University,Mathematical Institute
[3] Osaka City University,Graduate School of Science
We show the global existence of small solution to the perturbed Keller–Segel system of simplified version. Our system has a perturbed nonlinear term of worse sign, therefore the existence and uniqueness of solution is not really obvious. The local existence theorem is obtained by a variational observation for the elliptic part.