Entire Solutions of Certain Type of Non-Linear Difference Equations

被引:0
作者
Min-Feng Chen
Zong-Sheng Gao
Ji-Long Zhang
机构
[1] Beihang University,LMIB and School of Mathematics and Systems Science
来源
Computational Methods and Function Theory | 2019年 / 19卷
关键词
Entire solutions; Non-linear difference equations; Exponential polynomial; Nevanlinna theory; 34M05; 39A10; 39B32;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence of entire solutions of finite-order of non-linear difference equations of the form fn(z)+q(z)Δcf(z)=p1eα1z+p2eα2z,n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f^{n}(z)+q(z)\Delta _{c}f(z)=p_{1}\mathrm{e}^{\alpha _{1}z}+p_{2}\mathrm{e}^{\alpha _{2}z},\quad n\ge 2 \end{aligned}$$\end{document}and fn(z)+q(z)eQ(z)f(z+c)=p1eλz+p2e-λz,n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f^{n}(z)+q(z)\mathrm{e}^{Q(z)}f(z+c)=p_{1}\mathrm{e}^{\lambda z}+p_{2}\mathrm{e}^{-\lambda z},\quad n\ge 3 \end{aligned}$$\end{document}where q, Q are non-zero polynomials, c,λ,pi,αi(i=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c,\lambda ,p_{i},\alpha _{i}(i=1,2)$$\end{document} are non-zero constants such that α1≠α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{1}\ne \alpha _{2}$$\end{document} and Δcf(z)=f(z+c)-f(z)≢0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{c}f(z)=f(z+c)-f(z)\not \equiv 0$$\end{document}. Our results are improvements and complements of Wen et al. (Acta Math Sin 28:1295–1306, 2012), Yang and Laine (Proc Jpn Acad Ser A Math Sci 86:10–14, 2010) and Zinelâabidine (Mediterr J Math 14:1–16, 2017).
引用
收藏
页码:17 / 36
页数:19
相关论文
共 23 条
[1]  
Clunie J(1962)On integral and meromorphic functions J. Lond. Math. Soc. 37 17-27
[2]  
Chiang YM(2008)On the Nevanlinna characteristic of Raman. J. 16 105-129
[3]  
Feng SJ(2014) and difference equations in the complex plane Taiwan. J. Math. 18 677-685
[4]  
Chen ZX(2018)On entire solutions of certain type of differential-difference equations J. Comput. Anal. Appl. 24 137-147
[5]  
Yang CC(2006)Entire solutions of certain type of non-linear differential equations and differential-difference equations J. Math. Anal. Appl. 314 477-487
[6]  
Chen MF(2009)Difference analogue of the lemma on the logarithmic derivative with applications to difference equations Bull. Soc. Sci. Lett. Łódź. Sér. Rech. Déform. 59 19-23
[7]  
Gao ZS(2008)Entire solutions of some non-linear differential equations Arch. Math. 91 344-353
[8]  
Halburd RG(2008)On certain non-linear differential equations in complex domains J. Math. Anal. Appl. 344 253-259
[9]  
Korhonen RJ(2011)Entire solutions of certain type of differential equations J. Math. Anal. Appl. 375 310-319
[10]  
Laine I(2013)Entire solutions of certain type of differential equations II Ann. Acad. Sci. Fenn. Math. 38 581-593