Slowing down single-molecule trafficking through a protein nanopore reveals intermediates for peptide translocation

被引:104
作者
Mereuta, Loredana [1 ]
Roy, Mahua [2 ]
Asandei, Alina [3 ]
Lee, Jong Kook [4 ]
Park, Yoonkyung [4 ]
Andricioaei, Ioan [2 ]
Luchian, Tudor [1 ]
机构
[1] Alexandru I Cuza Univ, Dept Phys, Iasi, Romania
[2] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[3] Alexandru I Cuza Univ, Dept Interdisciplinary Res, Iasi, Romania
[4] Chosun Univ, Res Ctr Prot Mat, Kwangju, South Korea
来源
SCIENTIFIC REPORTS | 2014年 / 4卷
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
ALPHA-HEMOLYSIN; DNA TRANSLOCATION; COVALENT CHEMISTRY; DYNAMICS; MEMBRANE; CHANNEL; TRANSPORT; TIME; ELECTROPHORESIS; SIMULATION;
D O I
10.1038/srep03885
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The microscopic details of how peptides translocate one at a time through nanopores are crucial determinants for transport through membrane pores and important in developing nano-technologies. To date, the translocation process has been too fast relative to the resolution of the single molecule techniques that sought to detect its milestones. Using pH-tuned single-molecule electrophysiology and molecular dynamics simulations, we demonstrate how peptide passage through the alpha-hemolysin protein can be sufficiently slowed down to observe intermediate single-peptide sub-states associated to distinct structural milestones along the pore, and how to control residence time, direction and the sequence of spatio-temporal state-to-state dynamics of a single peptide. Molecular dynamics simulations of peptide translocation reveal the time-dependent ordering of intermediate structures of the translocating peptide inside the pore at atomic resolution. Calculations of the expected current ratios of the different pore-blocking microstates and their time sequencing are in accord with the recorded current traces.
引用
收藏
页数:11
相关论文
共 85 条
[1]  
Aksimentiev A, 2009, IEEE NANOTECHNOL MAG, V3, P21, DOI 10.1109/MNANO.2008.931112
[2]   pH Tuning of DNA Translocation Time through Organically Functionalized Nanopores [J].
Anderson, Brett N. ;
Muthukumar, Murugappan ;
Meller, Amit .
ACS NANO, 2013, 7 (02) :1408-1414
[3]   Unimolecular study of the interaction between the outer membrane protein OmpF from E. coli and an analogue of the HP(2-20) antimicrobial peptide [J].
Apetrei, Aurelia ;
Asandei, Alina ;
Park, Yoonkyung ;
Hahm, Kyung-Soo ;
Winterhalter, Mathias ;
Luchian, Tudor .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2010, 42 (02) :173-180
[4]   Investigation of Single-Molecule Kinetics Mediated by Weak Hydrogen Bonds within a Biological Nanopore [J].
Asandei, Alina ;
Apetrei, Aurelia ;
Park, Yoonkyung ;
Hahm, Kyung-Soo ;
Luchian, Tudor .
LANGMUIR, 2011, 27 (01) :19-24
[5]   Protein translocation in narrow pores: Inferring bottlenecks from native structure topology [J].
Bacci, Marco ;
Chinappi, Mauro ;
Casciola, Carlo Massimo ;
Cecconi, Fabio .
PHYSICAL REVIEW E, 2013, 88 (02)
[6]   Theory of Polymer-Nanopore Interactions Refined Using Molecular Dynamics Simulations [J].
Balijepalli, Arvind ;
Robertson, Joseph W. F. ;
Reiner, Joseph E. ;
Kasianowicz, John J. ;
Pastor, Richard W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (18) :7064-7072
[7]   Dynamics of DNA molecules in a membrane channel probed by active control techniques [J].
Bates, M ;
Burns, M ;
Meller, A .
BIOPHYSICAL JOURNAL, 2003, 84 (04) :2366-2372
[8]  
Bayley Hagan, 2008, V12, P251
[9]   COUNTING POLYMERS MOVING THROUGH A SINGLE-ION CHANNEL [J].
BEZRUKOV, SM ;
VODYANOY, I ;
PARSEGIAN, VA .
NATURE, 1994, 370 (6487) :279-281
[10]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614