Unimodular bilinear Fourier multipliers on Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} spaces

被引:0
作者
Jotsaroop Kaur
Saurabh Shrivastava
机构
[1] Indian Institute of Science,Department of Mathematics
[2] Education and Research,Department of Mathematics
[3] Indian Institute of Science,undefined
[4] Education and Research Bhopal,undefined
关键词
Fourier multipliers; Bilinear multipliers; Transference methods; 42A45; 42B25; 42B15;
D O I
10.1007/s00605-020-01417-4
中图分类号
学科分类号
摘要
In this paper we investigate the boundedness properties of bilinear multiplier operators associated with unimodular functions of the form m(ξ,η)=eiϕ(ξ-η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m(\xi ,\eta )=e^{i \phi (\xi -\eta )}$$\end{document}. We prove that if ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is a C1(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1({{\mathbb {R}}}^n)$$\end{document} real-valued non-linear function, then for all exponents p, q, r lying outside the local L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-range and satisfying the Hölder’s condition 1p+1q=1r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$$\end{document}, the bilinear multiplier norm ‖eiλϕ(ξ-η)‖Mp,q,r(Rn)→∞,λ∈R,|λ|→∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert e^{i\lambda \phi (\xi -\eta )}\Vert _{{\mathcal {M}}_{p,q,r}({{\mathbb {R}}}^n)}\rightarrow \infty ,~ \lambda \in {{\mathbb {R}}},~ |\lambda |\rightarrow \infty . \end{aligned}$$\end{document}For exponents in the local L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-range, we give examples of unimodular functions of the form eiϕ(ξ-η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{i\phi (\xi -\eta )}$$\end{document}, which do not give rise to bilinear multipliers. Further, we also discuss the essential continuity property of bilinear multipliers for exponents outside local L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-range.
引用
收藏
页码:87 / 103
页数:16
相关论文
共 11 条