Machine-learned exclusion limits without binning

被引:0
作者
Ernesto Arganda
Andres D. Perez
Martín de los Rios
Rosa María Sandá Seoane
机构
[1] Universidad Autónoma de Madrid,Departamento de Física Teórica
[2] Instituto de Física Teórica UAM-CSIC,IFLP, CONICET
[3] Universidad Nacional de La Plata,Dpto. de Física
来源
The European Physical Journal C | / 83卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Machine-learned likelihoods (MLL) combines machine-learning classification techniques with likelihood-based inference tests to estimate the experimental sensitivity of high-dimensional data sets. We extend the MLL method by including kernel density estimators (KDE) to avoid binning the classifier output to extract the resulting one-dimensional signal and background probability density functions. We first test our method on toy models generated with multivariate Gaussian distributions, where the true probability distribution functions are known. Later, we apply the method to two cases of interest at the LHC: a search for exotic Higgs bosons, and a Z′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z'$$\end{document} boson decaying into lepton pairs. In contrast to physical-based quantities, the typical fluctuations of the ML outputs give non-smooth probability distributions for pure-signal and pure-background samples. The non-smoothness is propagated into the density estimation due to the good performance and flexibility of the KDE method. We study its impact on the final significance computation, and we compare the results using the average of several independent ML output realizations, which allows us to obtain smoother distributions. We conclude that the significance estimation turns out to be not sensible to this issue.
引用
收藏
相关论文
共 37 条
[1]  
Radovic A(2018)Machine learning at the energy and intensity frontiers of particle physics Nature 560 41-158
[2]  
Williams M(1988)Neural networks and cellular automata in experimental high-energy physics Comput. Phys. Commun. 49 429-undefined
[3]  
Rousseau D(1990)Finding gluon jets with a neural trigger Phys. Rev. Lett. 65 1321-undefined
[4]  
Kagan M(2014)Searching for exotic particles in high-energy physics with deep learning Nat. Commun. 5 4308-undefined
[5]  
Bonacorsi D(1956)Remarks on some nonparametric estimates of a density function Ann. Math. Stat. 27 832-undefined
[6]  
Himmel A(1962)On estimation of a probability density function and mode Ann. Math. Stat. 33 1065-undefined
[7]  
Denby BH(1989)Searching for new heavy vector bosons in Z. Phys. C 45 109-undefined
[8]  
Lonnblad L(2011) colliders Eur. Phys. J. C 71 1554-undefined
[9]  
Peterson C(1933)Asymptotic formulae for likelihood-based tests of new physics Philos. Trans. Roy. Soc. Lond. A 231 289-undefined
[10]  
Rognvaldsson T(2011)On the problem of the most efficient tests of statistical hypotheses J. Mach. Learn. Res. 12 2825-undefined