2-Ranks of incidence matrices associated with conics in finite projective planes

被引:0
作者
Megan Adams
Junhua Wu
机构
[1] Lane College,Department of Mathematics
来源
Designs, Codes and Cryptography | 2014年 / 72卷
关键词
Conic; Incidence matrix; Low-density parity-check code; Module; -Rank.; 51E20; 05B20;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we investigate geometric properties of the secant-internal neighbors of internal points and the passant-external neighbors of external points in classical finite projective planes; we calculate the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2$$\end{document}-ranks of the incidence matrices of internal points versus their secant-internal neighbors and external points versus their passant-external neighbors using a combination of techniques from both finite geometry and linear algebra.
引用
收藏
页码:381 / 404
页数:23
相关论文
共 9 条
[1]  
Droms S.(2006)LDPC codes generated by conics in the classical projective plane Des. Codes Cryptogr. 40 343-356
[2]  
Mellinger K.E.(1991)Hexagons, conics, $$A_5$$ and $${\text{ P}SL}_2(K)$$ J. Lond. Math. Soc. 44 270-286
[3]  
Meyer C.(2012)On binary codes from conics in PG $$(2, q)$$ Eur. J. Comb. 33 33-48
[4]  
Dye R.H.(2011)Dimensions of some binary codes arising from a conic in PG $$(2, q)$$ J. Comb. Theory Ser. A 118 853-878
[5]  
Madison A.L.(undefined)undefined undefined undefined undefined-undefined
[6]  
Wu J.(undefined)undefined undefined undefined undefined-undefined
[7]  
Sin P.(undefined)undefined undefined undefined undefined-undefined
[8]  
Wu J.(undefined)undefined undefined undefined undefined-undefined
[9]  
Xiang Q.(undefined)undefined undefined undefined undefined-undefined