Boundedness and stabilization in the 3D minimal attraction–repulsion chemotaxis model with logistic source

被引:0
作者
Guoqiang Ren
Bin Liu
机构
[1] Huazhong University of Science and Technology,School of Mathematics and Statistics
[2] Huazhong University of Science and Technology,Hubei Key Laboratory of Engineering Modeling and Scientific Computing
来源
Zeitschrift für angewandte Mathematik und Physik | 2022年 / 73卷
关键词
Chemotaxis; Attraction–repulsion; Boundedness; Logistic source; Asymptotic behavior; Primary 35K45; 92C17; Secondary 35A01; 35Q92; 35B35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the fully parabolic attraction–repulsion chemotaxis system with logistic source in a three-dimensional bounded domain with smooth boundary. We first derive an explicit formula μ∗=μ∗(3,d1,d2,d3,β1,β2,χ,ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _*=\mu _*(3,d_1,d_2,d_3,\beta _1,\beta _2,\chi ,\xi )$$\end{document} for the logistic damping rate μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} such that the system has no blowups whenever μ>μ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu >\mu _*$$\end{document}. In addition, the asymptotic behavior of the solutions is discussed; we obtain the other explicit formula μ∗=μ∗(d1,d2,d3,α1,α2,β1,β2,χ,ξ,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu ^*=\mu ^*(d_1,d_2,d_3,\alpha _1,\alpha _2,\beta _1,\beta _2,\chi ,\xi ,\lambda )$$\end{document} for the logistic damping rate so that the convergence rate is expressed explicitly whenever μ>μ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu >\mu ^*$$\end{document}. Our results generalize and improve partial previously known ones.
引用
收藏
相关论文
共 83 条
[1]  
Bai X(2016)Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics Indiana Univ. Math. J. 65 553-583
[2]  
Winkler M(2015)Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues Math. Models Methods Appl. Sci. 25 1663-1763
[3]  
Bellomo N(2017)Large time behavior in the logistic Keller–Segel model via maximal Sobolev regularity Discrete Contin. Dyn. Syst. Ser. B 22 3369-3378
[4]  
Bellouquid A(2020)Asymptotic stability in a quasilinear chemotaxis-haptotaxis model with general logistic source and nonlinear signal production J. Differ. Equ. 269 10839-10918
[5]  
Tao Y(2020)Large time behavior of solutions to a quasilinear attraction-repulsion chemotaxis system with logistic source Nonlinear Anal. Real World Appl. 54 103095-683
[6]  
Winkler M(1997)A blow-up mechanism for a chemotaxis model Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 633-165
[7]  
Cao X(2003)From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I, Jahresber Deutsch. Math.-Verein. 105 103-107
[8]  
Dai F(2005)Boundedness vs. blow-up in a chemotaxis system J. Differ. Equ. 215 52-1478
[9]  
Liu B(2015)Boundedness of the attraction–repulsion Keller–Segel system J. Math. Anal. Appl. 422 1463-885
[10]  
He X(2018)Chemotaxis effect vs. logistic damping on boundedness in the 2-D minimal Keller–Segel model C. R. Math. Acad. Sci. Paris 356 875-415