Tumor classification of gastrointestinal liver metastases using CT-based radiomics and deep learning

被引:0
|
作者
Hishan Tharmaseelan
Abhinay K. Vellala
Alexander Hertel
Fabian Tollens
Lukas T. Rotkopf
Johann Rink
Piotr Woźnicki
Isabelle Ayx
Sönke Bartling
Dominik Nörenberg
Stefan O. Schoenberg
Matthias F. Froelich
机构
[1] University Medical Center Mannheim,Department of Radiology and Nuclear Medicine
[2] Heidelberg University,undefined
[3] German Cancer Research Center,undefined
来源
Cancer Imaging | / 23卷
关键词
Deep learning; Radiomics; Machine learning; Metastases; Gastrointestinal;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] A combined model integrating radiomics and deep learning based on multiparametric magnetic resonance imaging for classification of brain metastases
    Zhang, Bo
    Zhu, Jinling
    Xu, Ruizhe
    Zou, Li
    Lian, Yixin
    Xie, Xin
    Tian, Ye
    ACTA RADIOLOGICA, 2025, 66 (01) : 24 - 34
  • [42] Classification of Thyroid Nodules by Using Deep Learning Radiomics Based on Ultrasound Dynamic Video
    Zhang, Chunquan
    Liu, Dan
    Huang, Long
    Zhao, Yu
    Chen, Lili
    Guo, Youmin
    JOURNAL OF ULTRASOUND IN MEDICINE, 2022, 41 (12) : 2993 - 3002
  • [43] Deep learning based radiomics for gastrointestinal cancer diagnosis and treatment: A minireview
    Wong, Pak Kin
    Chan, In Neng
    Yan, Hao-Ming
    Gao, Shan
    Wong, Chi Hong
    Yan, Tao
    Yao, Liang
    Hu, Ying
    Wang, Zhong-Ren
    Yu, Hon Ho
    WORLD JOURNAL OF GASTROENTEROLOGY, 2022, 28 (45) : 6363 - 6379
  • [44] The Potential of a CT-Based Machine Learning Radiomics Analysis to Differentiate Brucella and Pyogenic Spondylitis
    Yasin, Parhat
    Mardan, Muradil
    Abliz, Dilxat
    Xu, Tao
    Keyoumu, Nuerbiyan
    Aimaiti, Abasi
    Cai, Xiaoyu
    Sheng, Weibin
    Mamat, Mardan
    JOURNAL OF INFLAMMATION RESEARCH, 2023, 16 : 5585 - 5600
  • [45] The relevance of CT-based geometric and radiomics analysis of whole liver tumor burden to predict survival of patients with metastatic colorectal cancer
    Alexander Mühlberg
    Julian W. Holch
    Volker Heinemann
    Thomas Huber
    Jan Moltz
    Stefan Maurus
    Nils Jäger
    Lian Liu
    Matthias F. Froelich
    Alexander Katzmann
    Eva Gresser
    Oliver Taubmann
    Michael Sühling
    Dominik Nörenberg
    European Radiology, 2021, 31 : 834 - 846
  • [46] Advanced atherosclerosis imaging by CT: Radiomics, machine learning and deep learning
    Kolossvary, Marton
    De Cecco, Carlo N.
    Feuchtner, Gudrun
    Maurovich-Horvat, Pal
    JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2019, 13 (05) : 274 - 280
  • [47] Differential diagnoses of gallbladder tumors using CT-based deep learning
    Fujita, Hiroaki
    Wakiya, Taiichi
    Ishido, Keinosuke
    Kimura, Norihisa
    Nagase, Hayato
    Kanda, Taishu
    Matsuzaka, Masashi
    Sasaki, Yoshihiro
    Hakamada, Kenichi
    ANNALS OF GASTROENTEROLOGICAL SURGERY, 2022, 6 (06): : 823 - 832
  • [48] The relevance of CT-based geometric and radiomics analysis of whole liver tumor burden to predict survival of patients with metastatic colorectal cancer
    Muehlberg, Alexander
    Holch, Julian W.
    Heinemann, Volker
    Huber, Thomas
    Moltz, Jan
    Maurus, Stefan
    Jaeger, Nils
    Liu, Lian
    Froelich, Matthias F.
    Katzmann, Alexander
    Gresser, Eva
    Taubmann, Oliver
    Suehling, Michael
    Noerenberg, Dominik
    EUROPEAN RADIOLOGY, 2021, 31 (02) : 834 - 846
  • [49] CT-based morphologic and radiomics features for the classification of MYCN gene amplification status in pediatric neuroblastoma
    Eelin Tan
    Khurshid Merchant
    Bhanu Prakash KN
    Arvind CS
    Joseph J. Zhao
    Seyed Ehsan Saffari
    Poh Hwa Tan
    Phua Hwee Tang
    Child's Nervous System, 2022, 38 : 1487 - 1495
  • [50] CT-based morphologic and radiomics features for the classification of MYCN gene amplification status in pediatric neuroblastoma
    Tan, Eelin
    Merchant, Khurshid
    Kn, Bhanu Prakash
    Cs, Arvind
    Zhao, Joseph J.
    Saffari, Seyed Ehsan
    Tan, Poh Hwa
    Tang, Phua Hwee
    CHILDS NERVOUS SYSTEM, 2022, 38 (08) : 1487 - 1495