Critical Hardy–Lieb–Thirring Inequalities for Fourth-Order Operators in Low Dimensions

被引:0
|
作者
Tomas Ekholm
Andreas Enblom
机构
[1] Royal Institute of Technology,Department of Mathematics
来源
Letters in Mathematical Physics | 2010年 / 94卷
关键词
35P15; 47F05; Hardy–Lieb–Thirring inequalities; fourth-order operators; critical exponents; Sobolev-type inequalities;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers Hardy–Lieb–Thirring inequalities for higher order differential operators. A result for general fourth-order operators on the half-line is developed, and the trace inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{tr}\left( (-\Delta)^2 - C^{\mathrm{HR}}_{d,2}\frac{1}{|x|^4} - V(x) \right)_-^{\gamma}\leq C_\gamma\int\limits_{\mathbb{R}^d} V(x)_+^{\gamma + \frac{d}{4}}\,\mathrm{d}x, \quad \gamma \geq 1 - \frac d 4,$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^{\mathrm{HR}}_{d,2}}$$\end{document} is the sharp constant in the Hardy–Rellich inequality and where Cγ >  0 is independent of V, is proved for dimensions d =  1, 3. As a corollary of this inequality, a Sobolev-type inequality is obtained.
引用
收藏
页码:293 / 312
页数:19
相关论文
共 9 条