Lyapunov-type inequalities for a fractional p-Laplacian system

被引:0
作者
Mohamed Jleli
Mokhtar Kirane
Bessem Samet
机构
[1] King Saud University,Department of Mathematics College of Science
[2] Université de La Rochelle Avenue M. Crépeau,LaSIE, Pôle Sciences et Technologies
[3] Faculty of Science King Abdulaziz University,NAAM Research Group, Department of Mathematics
[4] RUDN University,undefined
来源
Fractional Calculus and Applied Analysis | 2017年 / 20卷
关键词
Primary 35R11; Secondary 46E35; 35P15; 15A42; Lyapunov-type inequality; system; fractional ; -Laplacian; generalized spectrum; lower bound;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish Lyapunov-type inequalities for a fractional p-Laplacian system in an open bounded subset Ω⊂ℝN RN under Dirichlet boundary conditions. As an application of the obtained inequalities, we establish some geometric properties of the generalized spectrum associated to the considered system.
引用
收藏
页码:1485 / 1506
页数:21
相关论文
共 78 条
[1]  
Borg G(1949)On a Liapounoff criterion of stability Amer. J. Math. 71 67-70
[2]  
Brown RC(1997)Opial’s inequality and oscillation of 2nd order equations Proc. Amer. Math. Soc. 125 1123-1129
[3]  
Hinton DB(2010)Lyapunov-type integral inequalities for certain higher order differential equations Appl. Math. Comput. 216 368-373
[4]  
Cakmak D(2010)Lyapunov-type inequality for a class of Dirichlet quasilinear systems involving the (p J. Math. Anal. Appl. 369 76-81
[5]  
Çakmak D(2006)p J. Funct. Anal. 237 176-193
[6]  
Tiryaki A(2010) …,p J. Eur. Math. Soc 12 163-178
[7]  
Cañada A(1986)Laplacian Trans. Amer. Math. Soc. 294 263-285
[8]  
Montero J A(1987)Lyapunov inequalities for partial differential equations Trans. Amer. Math. Soc. 303 345-363
[9]  
Villegas S(1983)Lyapunov inequalities for Neumann boundary conditions at higher eigenvalues Hokkaido Math. J. 12 105-112
[10]  
Cañada A(1991)On coupled multiparameter nonlinear elliptic system Fasc. Math 23 25-41