Information and Entropy in Quantum Brownian MotionThermodynamic Entropy versus von Neumann Entropy

被引:0
作者
Christian Hörhammer
Helmut Büttner
机构
[1] Universität Bayreuth,Theoretische Physik I
来源
Journal of Statistical Physics | 2008年 / 133卷
关键词
Quantum Brownian motion; Information; Entropy; Landauer principle;
D O I
暂无
中图分类号
学科分类号
摘要
We compare the thermodynamic entropy of a quantum Brownian oscillator derived from the partition function of the subsystem with the von Neumann entropy of its reduced density matrix. At low temperatures we find deviations between these two entropies which are due to the fact that the Brownian particle and its environment are entangled. We give an explanation for these findings and point out that these deviations become important in cases where statements about the information capacity of the subsystem are associated with thermodynamic properties, as it is the case for the Landauer principle.
引用
收藏
页码:1161 / 1174
页数:13
相关论文
共 50 条
  • [21] Information Distances versus Entropy Metric
    Hu, Bo
    Bi, Lvqing
    Dai, Songsong
    [J]. ENTROPY, 2017, 19 (06)
  • [22] Von Neumann entropy and entropy squeezing of a two-level atom and the superposition of squeezed displaced fock states
    G. M. Abd Al-Kader
    A.-S. F. Obada
    [J]. Journal of Russian Laser Research, 2008, 29 : 398 - 407
  • [23] Von Neumann entropy and entropy squeezing of a two-level atom and the superposition of squeezed displaced fock states
    Al-Kader, G. M. Abd
    Obada, A. -S. F.
    [J]. JOURNAL OF RUSSIAN LASER RESEARCH, 2008, 29 (04) : 398 - 407
  • [24] Global quantum discord and von Neumann entropy in multipartite two-level atomic systems
    Ibrahim, M.
    Usman, M.
    Khan, Khalid
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2023, 21 (01)
  • [25] Facts and myths about zero-point thermal noise, and information entropy versus thermal entropy
    Kish, L. B.
    Ferry, D. K.
    Niklasson, G. A.
    Smulko, J. M.
    Granqvist, C. G.
    [J]. 2017 INTERNATIONAL CONFERENCE ON NOISE AND FLUCTUATIONS (ICNF), 2017,
  • [26] Characterizing Entropy in Statistical Physics and in Quantum Information Theory
    Baumgartner, Bernhard
    [J]. FOUNDATIONS OF PHYSICS, 2014, 44 (10) : 1107 - 1123
  • [27] Characterizing Entropy in Statistical Physics and in Quantum Information Theory
    Bernhard Baumgartner
    [J]. Foundations of Physics, 2014, 44 : 1107 - 1123
  • [28] On Entropy, Information, and Conservation of Information
    Cengel, Yunus A.
    [J]. ENTROPY, 2021, 23 (06)
  • [29] Entropy analysis of Brownian motor
    Lyshevski, MA
    [J]. 2003 THIRD IEEE CONFERENCE ON NANOTECHNOLOGY, VOLS ONE AND TWO, PROCEEDINGS, 2003, : 183 - 186
  • [30] Physical information entropy and probability Shannon entropy
    R. Ascoli
    R. Urigu
    [J]. International Journal of Theoretical Physics, 1997, 36 : 1691 - 1716