On Hörmander’s solution of the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{\partial }$$\end{document}-equation. I

被引:0
作者
Haakan Hedenmalm
机构
[1] KTH Royal Institute of Technology,Department of Mathematics
关键词
-Equation; Weighted estimates ; -equation; Hörmander’s theorem; Growing weight; Existence; Uniqueness of the solution; 35A05; 32W05; 30H20;
D O I
10.1007/s00209-015-1487-7
中图分类号
学科分类号
摘要
We explain how Hörmander’s classical solution of the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{\partial }$$\end{document}-equation in the plane with a weight which permits growth near infinity carries over to the rather opposite situation when we ask for decay near infinity. Here, however, a natural condition on the datum needs to be imposed. The condition is not only natural but also necessary to have the result at least in the Fock weight case. The norm identity which leads to the estimate is related to general area-type results in the theory of conformal mappings.
引用
收藏
页码:349 / 355
页数:6
相关论文
共 20 条
  • [1] Abuzyarova N(2006)Branch point area methods in conformal mapping J. Anal. Math. 99 177-198
  • [2] Hedenmalm H(2009)Finite rank Toeplitz operators: some extensions of D. Luecking’s theorem J. Funct. Anal. 256 2291-2303
  • [3] Alexandrov A(2008)Boundary properties of Green functions in the plane Duke Math. J. 145 1-24
  • [4] Rozenblum G(1951)Kernel functions and conformal mapping Compos. Math. 8 205-249
  • [5] Baranov A(1990)Nodal sets for eigenfunctions of the Laplacian on surfaces J. Am. Math. Soc. 3 333-353
  • [6] Hedenmalm H(1968)Approximation in the mean by analytic functions Dokl. Akad. Nauk SSSR 178 1025-1028
  • [7] Bergman S(2002)The dual of a Bergman space on simply connected domains J. Anal. Math. 88 311-335
  • [8] Schiffer M(2008)Planar Beurling transform and Grunsky inequalities Ann. Acad. Sci. Fenn. Math. 33 585-596
  • [9] Donnelly H(2005)Weighted Bergman spaces and the integral means spectrum of conformal mappings Duke Math. J. 127 341-393
  • [10] Fefferman C(2007)On the universal integral means spectrum of conformal mappings near the origin Proc. Am. Math. Soc. 135 2249-2255