Linear differential equations with entire coefficients of small growth

被引:0
|
作者
J. K. Langley
机构
[1] School of Mathematical Sciences,
[2] University of Nottingham,undefined
[3] Nottingham,undefined
[4] NG7 2RD,undefined
[5] United Kingdom,undefined
来源
Archiv der Mathematik | 2002年 / 78卷
关键词
Differential Equation; Entire Function; Linear Differential Equation; Small Growth; Entire Coefficient;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ n \geqq 3 $\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ A_0, \ldots, A_{n-2} $\end{document} are entire functions of small growth, not all polynomials, then the linear differential equation¶¶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ w^{(n)} + \sum\limits_{j=0}^{n-2} A_j w^{(j)} = 0 $\end{document}¶¶ cannot have a fundamental set of solutions each with few zeros.
引用
收藏
页码:291 / 296
页数:5
相关论文
共 50 条