Class 2 CRISPR/Cas: an expanding biotechnology toolbox for and beyond genome editing

被引:0
|
作者
Yuyi Tang
Yan Fu
机构
[1] MicroAnaly (Shanghai) Gene Technologies Co.,
[2] Ltd,undefined
[3] Anhui MicroAnaly Gene Technologies Co.,undefined
[4] Ltd,undefined
[5] National Gene Research Center,undefined
来源
Cell & Bioscience | / 8卷
关键词
Genome editing; Transcriptional repression; Diagnostic detection; CRISPR; Cas9; Cas12a; Cas13;
D O I
暂无
中图分类号
学科分类号
摘要
Artificial nuclease-dependent DNA cleavage systems (zinc-finger nuclease, ZFN; transcription activator like effectors, TALENs) and exogenous nucleic acid defense systems (CRISPR/Cas) have been used in the new era for genome modification. The most widely used toolbox for genome editing, modulation and detection contains Types II, V and VI of CRISPR/Cas Class 2 systems, categorized and characterized by Cas9, Cas12a and Cas13 respectively. In this review, we (1) elaborate on the definition, classification, structures of CRISPR/Cas Class 2 systems; (2) advance our understanding of new molecular mechanisms and recent progress in their applications, especially beyond genome-editing applications; (3) provide the insights on the specificity, efficiency and versatility of each tool; (4) elaborate the enhancement on specificity and efficiency of the CRISPR/Cas toolbox. The expanding and concerted usage of the CRISPR/Cas tools is making them more powerful in genome editing and other biotechnology applications.
引用
收藏
相关论文
共 50 条
  • [41] ORANGE: A CRISPR/Cas9-based genome editing toolbox for epitope tagging of endogenous proteins in neurons
    Willems, Jelmer
    de Jong, Arthur P. H.
    Scheefhals, Nicky
    Mertens, Eline
    Catsburg, Lisa A. E.
    Poorthuis, Rogier B.
    de Winter, Fred
    Verhaagen, Joost
    Meye, Frank J.
    MacGillavry, Harold D.
    PLOS BIOLOGY, 2020, 18 (04)
  • [42] The CRISPR/Cas9 Genome Editing Revolution
    Renjie Jiao
    Caixia Gao
    JournalofGeneticsandGenomics, 2016, 43 (05) : 227 - 228
  • [43] A novel CRISPR–Cas system for easier genome editing?
    Joana Osório
    Nature Reviews Genetics, 2015, 16 : 687 - 687
  • [44] Expanding the CRISPR toolbox for Chinese hamster ovary cells with comprehensive tools for Mad7 genome editing
    Rojek, Johan B.
    Basavaraju, Yogesh
    Nallapareddy, Saranya
    Ocana, Dubhe B. B.
    Baumgartner, Roland
    Schoffelen, Sanne
    Grav, Lise M.
    Goletz, Steffen
    Pedersen, Lasse E.
    BIOTECHNOLOGY AND BIOENGINEERING, 2023, 120 (06) : 1478 - 1491
  • [45] Genome editing using CRISPR-Cas nucleases
    Joung, J. K.
    HUMAN GENE THERAPY, 2016, 27 (11) : A7 - A7
  • [46] The CRISPR tool kit for genome editing and beyond
    Adli, Mazhar
    NATURE COMMUNICATIONS, 2018, 9
  • [47] Efficient CRISPR/Cas12a-Based Genome-Editing Toolbox for Metabolic Engineering in Methanococcus maripaludis
    Bao, Jichen
    Mateos, Enrique de Dios
    Scheller, Silvan
    ACS SYNTHETIC BIOLOGY, 2022, 11 (07): : 2496 - 2503
  • [48] Harnessing CRISPR-Cas for oomycete genome editing
    Vink, Jochem N. A.
    Hayhurst, Max
    Gerth, Monica L.
    TRENDS IN MICROBIOLOGY, 2023, 31 (09) : 947 - 958
  • [49] Evolution of CRISPR/Cas Systems for Precise Genome Editing
    Hryhorowicz, Magdalena
    Lipinski, Daniel
    Zeyland, Joanna
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (18)
  • [50] Computational Tools and Resources for CRISPR/Cas Genome Editing
    Li, Chao
    Chu, Wen
    Gill, Rafaqat Ali
    Sang, Shifei
    Shi, Yuqin
    Hu, Xuezhi
    Yang, Yuting
    Zaman, Qamar U.
    Zhang, Baohong
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2023, 21 (01) : 108 - 126