Dynamic Data Structures for Timed Automata Acceptance

被引:0
作者
Alejandro Grez
Filip Mazowiecki
Michał Pilipczuk
Gabriele Puppis
Cristian Riveros
机构
[1] Pontificia Universidad Católica de Chile,
[2] Millennium Institute for Foundational Research on Data,undefined
[3] University of Warsaw,undefined
[4] University of Udine,undefined
来源
Algorithmica | 2022年 / 84卷
关键词
Timed automata; Data stream; Dynamic data structure; Theory of computation; Models of computation;
D O I
暂无
中图分类号
学科分类号
摘要
We study a variant of the classical membership problem in automata theory, which consists of deciding whether a given input word is accepted by a given automaton. We do so through the lenses of parameterized dynamic data structures: we assume that the automaton is fixed and its size is the parameter, while the input word is revealed as in a stream, one symbol at a time following the natural order on positions. The goal is to design a dynamic data structure that can be efficiently updated upon revealing the next symbol, while maintaining the answer to the query on whether the word consisting of symbols revealed so far is accepted by the automaton. We provide complexity bounds for this dynamic acceptance problem for timed automata that process symbols interleaved with time spans. The main contribution is a dynamic data structure that maintains acceptance of a fixed one-clock timed automaton A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} with amortized update time 2O(|A|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{{\mathcal {O}}(|{\mathcal {A}}|)}$$\end{document} per input symbol.
引用
收藏
页码:3223 / 3245
页数:22
相关论文
共 44 条
  • [1] Alman J(2020)Dynamic parameterized problems and algorithms ACM Trans. Algorithms 16 45-14546
  • [2] Mnich M(2019)Dynamic kernels for hitting sets and set packing Electronic Colloquium on Computational Complexity 26 146-235
  • [3] Williams VV(1994)A theory of timed automata Theoret. Comput. Sci. 126 183-7
  • [4] Bannach M(2000)Timed automata and additive clock constraints Inf. Process. Lett. 75 1-303
  • [5] Heinrich Z(2009)A brief account of runtime verification J. Log. Algebraic Methods Program. 78 293-162
  • [6] Reischuk R(2005)Monitoring algorithms for metric temporal logic specifications Electronic Notes in Theoretical Computer Science 113 145-1813
  • [7] Tantau T(2002)Maintaining stream statistics over sliding windows SIAM J. Comput. 31 1794-118
  • [8] Alur R(1998)Computing on data streams External Memory Algorithms 50 107-40
  • [9] Dill DL(2019)Efficient query processing for dynamically changing datasets ACM SIGMOD Rec. 48 33-1905
  • [10] Bérard B(2014)Recognizing well-parenthesized expressions in the streaming model SIAM J. Comput. 43 1880-23