A Remark on the Boundedness of Calderón–Zygmund Operators in Nony–homogeneous Spaces

被引:4
作者
Xiao Li Fu
Guo En Hu
Da Chun Yang
机构
[1] Beijing Normal University,School of Mathematical Sciences
[2] University of Information Engineering,Department of Applied Mathematics
[3] Beijing Normal University,School of Mathematical Sciences
来源
Acta Mathematica Sinica, English Series | 2007年 / 23卷
关键词
Calderón–Zygmund operator; Hardy space; (; ); Non–doubling measure; 42B20; 42B30; 42B25; 43A99;
D O I
暂无
中图分类号
学科分类号
摘要
Let μ be a Radon measure on Rd which may be non–doubling. The only condition satisfied by μ is that μ(B(x, r)) ≤ Crn for all x ∈ ℝd, r > 0 and some fixed 0 < n ≤ d. In this paper, the authors prove that the boundedness from H1(μ) into L1,∞(μ) of a singular integral operator T with Calderón–Zygmund kernel of Hörmander type implies its L2(μ)–boundedness.
引用
收藏
页码:449 / 456
页数:7
相关论文
共 11 条
  • [1] Nazarov undefined(1998)undefined Internat Math. Res. Notices 9 463-undefined
  • [2] Nazarov undefined(2002)undefined Duke Math. J. 113 259-undefined
  • [3] Nazarov undefined(2003)undefined Acta Math. 190 151-undefined
  • [4] Orobitg undefined(2002)undefined Trans. Amer. Math. Soc. 354 2013-undefined
  • [5] Tolsa undefined(2001)undefined Proc. London Math. Soc. 82 195-undefined
  • [6] Tolsa undefined(2001)undefined Math. Ann. 319 89-undefined
  • [7] Tolsa undefined(2001)undefined Adv. Math. 164 57-undefined
  • [8] Tolsa undefined(2001)undefined Publ. Mat. 45 163-undefined
  • [9] Tolsa undefined(2003)undefined Trans. Amer. Math. Soc. 355 315-undefined
  • [10] Tolsa undefined(2003)undefined Acta Math. 190 105-undefined