High-power LEDs based on InGaAsP/InP heterostructures

被引:0
|
作者
V. Rakovics
A. N. Imenkov
V. V. Sherstnev
O. Yu. Serebrennikova
N. D. Il’inskaya
Yu. P. Yakovlev
机构
[1] Hungarian Academy of Sciences,Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences
[2] Russian Academy of Sciences,Ioffe Physical
来源
Semiconductors | 2014年 / 48卷
关键词
Light Emit Diode; Radiative Recombination; Directivity Pattern; External Quantum Efficiency; Auger Recombination;
D O I
暂无
中图分类号
学科分类号
摘要
High-power light-emitting diodes (LEDs) with mesa diameters of 100, 200, and 300 μm are developed on the basis of InGaAsP/InP heterostructures. The mesas are close in shape to a truncated cone with a generatrix inclination angle of ∼45° in the vicinity of the active region of the LED, with a ring etched around the mesa serving as a reflector. The emission spectra and directivity patterns of these LEDs are studied in a wide range of current densities and it is shown that radiative recombination is dominant to a current density of ∼5000 A/cm2, which makes these structures promising for the development of high-power LEDs. An emission power of ∼14 mW is obtained in the continuous-wave mode (I = 0.2 A, λ = 1.1 μm), and that of 77 mW, in the pulsed mode (I = 2 A, λ = 1.1 μm), which corresponds to external quantum efficiencies of 6.2 and 3.4%, respectively.
引用
收藏
页码:1653 / 1656
页数:3
相关论文
共 42 条
  • [1] High-power diode lasers (λ = 1.7–1.8 µm) based on asymmetric quantum-well separate-confinement InGaAsP/InP heterostructures
    A. V. Lyutetskiy
    N. A. Pikhtin
    N. V. Fetisova
    A. Yu. Leshko
    S. O. Slipchenko
    Z. N. Sokolova
    Yu. A. Ryaboshtan
    A. A. Marmalyuk
    I. S. Tarasov
    Semiconductors, 2009, 43 : 1602 - 1605
  • [2] Experimental study on high-power LEDs integrated with micro heat pipe
    LI C.-M.
    Zhou C.-P.
    Luo Y.
    Hamidnia M.
    Wang X.-D.
    You B.
    Optoelectronics Letters, 2016, 12 (1) : 31 - 34
  • [3] High-power InAs/InAsSbP heterostructure leds for methane spectroscopy (λ ≈ 3.3 μm)
    A. P. Astakhova
    A. S. Golovin
    N. D. Il’inskaya
    K. V. Kalinina
    S. S. Kizhayev
    O. Yu. Serebrennikova
    N. D. Stoyanov
    Zs. J. Horvath
    Yu. P. Yakovlev
    Semiconductors, 2010, 44 : 263 - 268
  • [4] 1.47 μm High Characteristic Temperature InGaAsP/InP MQW Laser
    Chen, Weibo
    Li, Lin
    Zhao, Jinlong
    Wang, Yong
    Li, Te
    Lu, Peng
    Li, Mei
    Liu, GuoJun
    2012 INTERNATIONAL CONFERENCE ON OPTOELECTRONICS AND MICROELECTRONICS (ICOM), 2012, : 115 - 118
  • [5] LEDs based on InGaAs/GaAs heterostructures with magnetically controlled electroluminescence
    A. V. Kudrin
    M. V. Dorokhin
    Yu. A. Danilov
    E. I. Malysheva
    Technical Physics Letters, 2011, 37 : 1168 - 1171
  • [6] High-Power and High-Efficiency InGaN-Based Light Emitters
    Laubsch, Ansgar
    Sabathil, Matthias
    Baur, Johannes
    Peter, Matthias
    Hahn, Berthold
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (01) : 79 - 87
  • [7] A study of thermal processes in high-power InGaN/GaN flip-chip LEDs by IR thermal imaging microscopy
    A. L. Zakgeim
    G. L. Kuryshev
    M. N. Mizerov
    V. G. Polovinkin
    I. V. Rozhansky
    A. E. Chernyakov
    Semiconductors, 2010, 44 : 373 - 379
  • [8] High Characteristic Temperature InGaAsP/InP Tunnel Injection Multiple-Quantum-Well Lasers
    Wang Yang
    Qiu Ying-Ping
    Pan Jiao-Qing
    Zhao Ling-Juan
    Zhu Hong-Liang
    Wang Wei
    CHINESE PHYSICS LETTERS, 2010, 27 (11)
  • [9] A thermosyphon heat pipe cooler for high power LEDs cooling
    Ji Li
    Wenkai Tian
    Lucang Lv
    Heat and Mass Transfer, 2016, 52 : 1541 - 1548
  • [10] High-power AlGaInAs/InP semiconductor lasers with an ultra-narrow waveguide emitting in the spectral range 1.9-2.0 μm
    Svetogorov, V. N.
    Ryaboshtan, Yu L.
    Volkov, N. A.
    Ladugin, M. A.
    Padalitsa, A. A.
    Marmalyuk, A. A.
    Bakhvalov, K., V
    Veselov, D. A.
    Lyutetskii, A., V
    Strelets, V. A.
    Slipchenko, S. O.
    Pikhtin, N. A.
    QUANTUM ELECTRONICS, 2021, 51 (10) : 909 - 911