Modeling preference evolution in discrete choice models: A Bayesian state-space approach

被引:0
|
作者
Mohamed Lachaab
Asim Ansari
Kamel Jedidi
Abdelwahed Trabelsi
机构
[1] University of Tunis,Institut Superieur de Gestion
[2] Clarkson University,Graduate School of Business
[3] Columbia University,undefined
来源
Quantitative Marketing and Economics | 2006年 / 4卷
关键词
Preference evolution; Hierarchical Bayesian state-space models; Heterogeneity; Multinomial probit; Choice models; Pricing; Promotions;
D O I
暂无
中图分类号
学科分类号
摘要
We develop discrete choice models that account for parameter driven preference dynamics. Choice model parameters may change over time because of shifting market conditions or due to changes in attribute levels over time or because of consumer learning. In this paper we show how such preference evolution can be modeled using hierarchial Bayesian state space models of discrete choice. The main feature of our approach is that it allows for the simultaneous incorporation of multiple sources of preference and choice dynamics. We show how the state space approach can include state dependence, unobserved heterogeneity, and more importantly, temporal variability in preferences using a correlated sequence of population distributions. The proposed model is very general and nests commonly used choice models in the literature as special cases.
引用
收藏
页码:57 / 81
页数:24
相关论文
共 50 条
  • [1] Modeling preference evolution in discrete choice models: A Bayesian state-space approach
    Lachaab, Mohamed
    Ansari, Asim
    Jedidi, Kamel
    Trabelsi, Abdelwahed
    QME-QUANTITATIVE MARKETING AND ECONOMICS, 2006, 4 (01): : 57 - 81
  • [2] A simple Bayesian state-space approach to the collective risk models
    Ahn, Jae Youn
    Jeong, Himchan
    Lu, Yang
    SCANDINAVIAN ACTUARIAL JOURNAL, 2023, 2023 (05) : 509 - 529
  • [3] Call Center Arrival Modeling: A Bayesian State-Space Approach
    Aktekin, Tevfik
    Soyer, Refik
    NAVAL RESEARCH LOGISTICS, 2011, 58 (01) : 28 - 42
  • [4] State-Space Reduction through Preference Modeling
    Klimek, Radoslaw
    Wojnicki, Igor
    Ernst, Sebastian
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT II, 2013, 7895 : 363 - 374
  • [5] Automatic detection and identification of shocks in Gaussian state-space models: A Bayesian approach
    Salvador, M
    Gargallo, P
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2006, 22 (01) : 17 - 39
  • [6] A BAYESIAN-APPROACH TO STATE-SPACE MULTIVARIATE TIME-SERIES MODELING
    DORFMAN, JH
    HAVENNER, AM
    JOURNAL OF ECONOMETRICS, 1992, 52 (03) : 315 - 346
  • [7] THE STATE-SPACE APPROACH IN GROWTH MODELING
    GARCIA, O
    CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE, 1994, 24 (09): : 1894 - 1903
  • [8] State inference in variational Bayesian nonlinear state-space models
    Raiko, T
    Tornio, M
    Honkela, A
    Karhunen, J
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 222 - 229
  • [9] A Bayesian state-space formulation of dynamic occupancy models
    Royle, J. Andrew
    Kery, Marc
    ECOLOGY, 2007, 88 (07) : 1813 - 1823
  • [10] Feedback quality adjustment with Bayesian state-space models
    Triantafyllopoulos, K.
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2007, 23 (02) : 145 - 156