The canonical projection associated with certain possibly infinite generalized iterated function systems as a fixed point

被引:0
作者
Radu Miculescu
Silviu-Aurelian Urziceanu
机构
[1] Transilvania University of Braşov,Faculty of Mathematics and Computer Science
[2] University of Piteşti,Faculty of Mathematics and Computer Science
[3] Romania,undefined
来源
Journal of Fixed Point Theory and Applications | 2018年 / 20卷
关键词
Possibly infinite generalized iterated function system; canonical projection; attractor; fixed point ; -contraction; Meir–Keeler function; Primary 28A80; Secondary 54H20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, influenced by the ideas from Mihail (Fixed Point Theory Appl 2015:15, 2015), we associate to every generalized iterated function system F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} (of order m) an operator HF:Cm→C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\mathcal {F}}:\mathcal {C} ^{m}\rightarrow \mathcal {C}$$\end{document}, where C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}$$\end{document} stands for the space of continuous functions from the shift space on the metric space corresponding to the system. We provide sufficient conditions (on the constitutive functions of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}) for the operator HF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\mathcal {F}}$$\end{document} to be continuous, contraction, φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-contraction, Meir–Keeler or contractive. We also give sufficient condition under which HF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\mathcal {F}}$$\end{document} has a unique fixed point π0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{0}$$\end{document}. Moreover, we prove that, under these circumstances, the closure of the imagine of π0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{0}$$\end{document} is the attractor of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} and that π0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _{0}$$\end{document} is the canonical projection associated with F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document}. In this way we give a partial answer to the open problem raised on the last paragraph of the above-mentioned Mihail’s paper.
引用
收藏
相关论文
共 23 条
  • [1] Dumitru D(2009)Generalized iterated function systems containing Meir–Keeler functions An. Univ. Bucur. Mat. 58 109-121
  • [2] Dumitru D(2016)Contraction-type functions and some applications to GIIFS An. Univ. Spiru Haret Ser. Mat. Inform. 12 31-44
  • [3] Hutchinson JE(1981)Fractals and self similarity Indiana Univ. Math. J. 30 713-747
  • [4] Jaros P(2016)Algorithms generating images of attractors of generalized iterated function systems Numer. Algorithms 73 477-499
  • [5] Maślanka Ł(2014)Generalized iterated function systems with place dependent probabilities Acta Appl. Math. 130 135-150
  • [6] Strobin F(2008)Applications of Fixed Point Theorems in the Theory of Generalized IFS Fixed Point Theory and Applications 2008 312876-213
  • [7] Miculescu R(2009)A generalization of the Hutchinson measure Mediterr. J. Math. 6 203-355
  • [8] Mihail Alexandru(2010)Generalized IFSs on Noncompact Spaces Fixed Point Theory and Applications 2010 584215-156
  • [9] Miculescu Radu(2008)The shift space for recurrent iterated function systems Rev. Roum. Math. Pures Appl. 53 339-372
  • [10] Mihail A(2018)Fuzzy attractors appearing from GIFZS Fuzzy Set Syst. 331 131-858