We study the one-dimensional discrete quasi-periodic Schrödinger equation
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$-{\varphi}(n + 1) -{\varphi}(n - 1) + {\lambda}V (x + n\omega){\varphi}(n) = E{\varphi}(n),\quad n \in {\mathbb{Z}}$$
\end{document}. We introduce the notion of variations of potential and use it to define typical potential. We show that for typical C3 potential V, if the coupling constant λ is large, then for most frequencies ω, the Lyapunov exponent is positive for all energies E.